
Package: nimble (via r-universe)
January 8, 2025

Title MCMC, Particle Filtering, and Programmable Hierarchical Modeling

Description A system for writing hierarchical statistical models
largely compatible with 'BUGS' and 'JAGS', writing
nimbleFunctions to operate models and do basic R-style math,
and compiling both models and nimbleFunctions via
custom-generated C++. 'NIMBLE' includes default methods for
MCMC, Laplace Approximation, Monte Carlo Expectation
Maximization, and some other tools. The nimbleFunction system
makes it easy to do things like implement new MCMC samplers
from R, customize the assignment of samplers to different parts
of a model from R, and compile the new samplers automatically
via C++ alongside the samplers 'NIMBLE' provides. 'NIMBLE'
extends the 'BUGS'/'JAGS' language by making it extensible: New
distributions and functions can be added, including as calls to
external compiled code. Although most people think of MCMC as
the main goal of the 'BUGS'/'JAGS' language for writing models,
one can use 'NIMBLE' for writing arbitrary other kinds of
model-generic algorithms as well. A full User Manual is
available at <https://r-nimble.org>.

Version 1.3.0

Date 2024-12-17

Maintainer Christopher Paciorek <paciorek@stat.berkeley.edu>

Depends R (>= 3.1.2)

Imports methods,igraph,coda,R6,pracma,numDeriv

Suggests testthat,mcmcse,nloptr

URL https://r-nimble.org, https://github.com/nimble-dev/nimble

BugReports https://github.com/nimble-dev/nimble/issues

SystemRequirements GNU make

License BSD_3_clause + file LICENSE | GPL (>= 2)

Copyright See COPYRIGHTS file.

1

https://r-nimble.org
https://r-nimble.org
https://github.com/nimble-dev/nimble
https://github.com/nimble-dev/nimble/issues

2

Note For convenience, the package includes the necessary header files
for the Eigen distribution. (This is all that is needed to use
that functionality.) You can use an alternative installation of
Eigen on your system or the one we provide. The license for the
Eigen code is very permissive and allows us to distribute it
with this package. See <http://eigen.tuxfamily.org/index.php?
title=Main_Page> and also the License section on that page.

Encoding UTF-8

LazyData false

Collate config.R all_utils.R options.R distributions_inputList.R
distributions_processInputList.R
distributions_implementations.R BUGS_BUGSdecl.R BUGS_contexts.R
BUGS_nimbleGraph.R BUGS_modelDef.R BUGS_model.R
BUGS_graphNodeMaps.R BUGS_readBUGS.R BUGS_macros.R
BUGS_testBUGS.R BUGS_getDependencies.R BUGS_utils.R
BUGS_mathCompatibility.R externalCalls.R genCpp_exprClass.R
genCpp_operatorLists.R genCpp_RparseTree2exprClasses.R
genCpp_initSizes.R genCpp_buildIntermediates.R
genCpp_processSpecificCalls.R genCpp_sizeProcessing.R
genCpp_toEigenize.R genCpp_insertAssertions.R genCpp_maps.R
genCpp_liftMaps.R genCpp_eigenization.R genCpp_addDebugMarks.R
genCpp_generateCpp.R RCfunction_core.R RCfunction_compile.R
nimbleFunction_util.R nimbleFunction_core.R
nimbleFunction_nodeFunction.R nimbleFunction_nodeFunctionNew.R
nimbleFunction_Rderivs.R nimbleFunction_Rexecution.R
nimbleFunction_compile.R nimbleFunction_keywordProcessing.R
nimbleList_core.R types_util.R types_symbolTable.R
types_modelValues.R types_modelValuesAccessor.R
types_modelVariableAccessor.R types_nimbleFunctionList.R
types_nodeFxnVector.R types_numericLists.R cppDefs_utils.R
cppDefs_variables.R cppDefs_core.R cppDefs_namedObjects.R
cppDefs_ADtools.R cppDefs_BUGSmodel.R cppDefs_RCfunction.R
cppDefs_nimbleFunction.R cppDefs_nimbleList.R
cppDefs_modelValues.R cppDefs_cppProject.R
cppDefs_outputCppFromRparseTree.R cppInterfaces_utils.R
cppInterfaces_models.R cppInterfaces_modelValues.R
cppInterfaces_nimbleFunctions.R cppInterfaces_otherTypes.R
nimbleProject.R initializeModel.R parameterTransform.R CAR.R
Laplace.R MCMC_utils.R MCMC_configuration.R MCMC_build.R
MCMC_run.R MCMC_samplers.R MCMC_conjugacy.R MCMC_autoBlock.R
MCMC_RJ.R MCMC_WAIC.R MCEM_build.R crossValidation.R
BNP_distributions.R BNP_samplers.R NF_utils.R miscFunctions.R
makevars.R setNimbleInternalFunctions.R registration.R
nimble-package.r QuadratureGrids.R zzz.R

RoxygenNote 7.3.1

Config/pak/sysreqs libglpk-dev make libxml2-dev

Repository https://nimble-dev.r-universe.dev

Contents 3

RemoteUrl https://github.com/nimble-dev/nimble

RemoteRef HEAD

RemoteSha 5e8a4ce7f1937919e362ee698af9d3b47c743c86

RemoteSubdir packages/nimble

Contents
ADbreak . 6
ADNimbleList . 6
ADproxyModelClass-class . 7
any_na . 7
as.carAdjacency . 8
as.carCM . 9
asRow . 10
autoBlock . 10
BUGSdeclClass-class . 12
buildAGHQGrid . 12
buildAuxiliaryFilter . 14
buildBootstrapFilter . 14
buildEnsembleKF . 15
buildIteratedFilter2 . 15
buildLaplace . 15
buildLiuWestFilter . 25
buildMCEM . 26
buildMCMC . 33
calculateWAIC . 36
CAR-Normal . 38
CAR-Proper . 41
carBounds . 43
carMaxBound . 44
carMinBound . 45
CAR_calcNumIslands . 46
Categorical . 46
checkInterrupt . 47
ChineseRestaurantProcess . 48
clearCompiled . 49
CmodelBaseClass-class . 49
CnimbleFunctionBase-class . 50
codeBlockClass-class . 50
compileNimble . 50
configureMCMC . 52
configureRJ . 54
Constraint . 58
decide . 59
decideAndJump . 60
declare . 61
deregisterDistributions . 62

4 Contents

Dirichlet . 62
distributionInfo . 63
Double-Exponential . 65
eigenNimbleList . 67
Exponential . 67
extractControlElement . 69
flat . 69
getBound . 70
getBUGSexampleDir . 71
getConditionallyIndependentSets . 72
getDefinition . 73
getMacroParameters . 74
getNimbleOption . 75
getParam . 76
getSamplesDPmeasure . 77
getsize . 79
identityMatrix . 79
initializeModel . 80
Interval . 81
Inverse-Gamma . 82
Inverse-Wishart . 84
is.nf . 85
is.nl . 86
LKJ . 86
makeBoundInfo . 87
makeModelDerivsInfo . 88
makeParamInfo . 89
MCMCconf-class . 90
modelBaseClass-class . 97
modelDefClass-class . 105
modelInitialization . 106
modelValues . 106
modelValuesBaseClass-class . 107
modelValuesConf . 108
Multinomial . 109
Multivariate-t . 110
MultivariateNormal . 111
nfMethod . 112
nfVar . 113
nimble-internal . 114
nimble-math . 115
nimble-R-functions . 115
nimbleCode . 116
nimbleExternalCall . 117
nimbleFunction . 119
nimbleFunctionBase-class . 121
nimbleFunctionList-class . 121
nimbleFunctionVirtual . 121

Contents 5

nimbleList . 122
nimbleMCMC . 123
nimbleModel . 127
nimbleOptions . 129
nimbleRcall . 130
nimbleType-class . 132
nimCat . 132
nimCopy . 133
nimDerivs . 135
nimDim . 136
nimEigen . 137
nimIntegrate . 138
nimMatrix . 140
nimNumeric . 142
nimOptim . 143
nimOptimDefaultControl . 146
nimOptimMethod . 146
nimPrint . 147
nimStop . 148
nimSvd . 149
nodeFunctions . 150
optimControlNimbleList . 152
optimDefaultControl . 152
optimResultNimbleList . 153
parameterTransform . 153
pow_int . 155
printErrors . 156
rankSample . 157
readBUGSmodel . 158
registerDistributions . 160
resize . 163
Rmatrix2mvOneVar . 164
RmodelBaseClass-class . 165
run.time . 165
runCrossValidate . 166
runLaplace . 169
runMCMC . 171
sampler_BASE . 174
setAndCalculate . 195
setAndCalculateOne . 196
setSize . 197
setupMargNodes . 198
setupOutputs . 201
simNodes . 202
simNodesMV . 203
singleVarAccessClass-class . 204
StickBreakingFunction . 204
summaryLaplace . 205

6 ADNimbleList

svdNimbleList . 207
t . 207
testBUGSmodel . 209
valueInCompiledNimbleFunction . 210
values . 211
waic . 212
waicDetailsNimbleList . 215
waicNimbleList . 216
Wishart . 216
withNimbleOptions . 218

Index 219

ADbreak NIMBLE language function to break tracking of derivatives

Description

This function is used in a method of a nimbleFunction that has derivatives enabled. It returns its
value but breaks tracking of derivatives.

Usage

ADbreak(x)

Arguments

x scalar value

Details

This funcion only works with scalars.

ADNimbleList Data type for the return value of nimDerivs

Description

nimbleList definition for the type of nimbleList returned by nimDerivs.

Usage

ADNimbleList

Format

An object of class list of length 1.

ADproxyModelClass-class 7

Fields

value The value of the function evaluated at the given input arguments.

jacobian The Jacobian of the function evaluated at the given input arguments.

hessian The Hessian of the function evaluated at the given input arguments.

See Also

nimDerivs

ADproxyModelClass-class

create an ADproxyModelClass object

Description

create an ADproxyModelClass object. For internal use.

Arguments

Rmodel The name of an uncompiled model

Details

This is a proxy model for model_AD. The class needs just enough pieces to be used like a model
for purposes of nodeFunction compilation. The model will contain an ADproxyModel and then
the nodeFunction setup code will extract it. The model interface will population the proxy model’s
CobjectInterface

Author(s)

NIMBLE development team

any_na Determine if any values in a vector are NA or NaN

Description

NIMBLE language functions that can be used in either compiled or uncompiled nimbleFunctions
to detect if there are any NA or NaN values in a vector.

Usage

any_na(x)

any_nan(x)

8 as.carAdjacency

Arguments

x vector of values

Author(s)

NIMBLE Development Team

as.carAdjacency Convert CAR structural parameters to adjacency, weights, num format

Description

This will convert alternate representations of CAR process structure into (adj, weights, num) form
required by dcar_normal.

Usage

as.carAdjacency(...)

Arguments

... Either: a symmetric matrix of unnormalized weights, or two lists specifying
adjacency indices and the corresponding unnormalized weights.

Details

Two alternate representations are handled:

A single matrix argument will be interpreted as a matrix of symmetric unnormalized weights.

Two lists will be interpreted as (the first) a list of numeric vectors specifying the adjacency (neigh-
boring) indices of each CAR process component, and (the second) a list of numeric vectors giving
the unnormalized weights for each of these neighboring relationships.

Author(s)

Daniel Turek

See Also

CAR-Normal

as.carCM 9

as.carCM Convert weights vector to parameters of dcar_proper distributio

Description

Convert weights vector to C and M parameters of dcar_proper distribution

Usage

as.carCM(adj, weights, num)

Arguments

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

weights vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. This is a sparse representation of the full
(unnormalized) weight matrix.

num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.

Details

Given a symmetric matrix of unnormalized weights, this function will calculate corresponding val-
ues for the C and M arguments suitable for use in the dcar_proper distribution. This function can
be used to transition between usage of dcar_normal and dcar_proper, since dcar_normal uses
the adj, weights, and num arguments, while dcar_proper requires adj, num, and also the C and M
as returned by this function.

Here, C is a sparse vector representation of the row-normalized adjacency matrix, and M is a vector
containing the conditional variance for each region. The resulting values of C and M are guaranteed
to satisfy the symmetry constraint imposed on C and M , that M−1C is symmetric, where M is a
diagonal matrix and C is the row-normalized adjacency matrix.

Value

A named list with elements C and M. These may be used as the C and M arguments to the dcar_proper
distribution.

Author(s)

Daniel Turek

See Also

CAR-Normal, CAR-Proper

10 autoBlock

asRow Turn a numeric vector into a single-row or single-column matrix

Description

Turns a numeric vector into a matrix that has 1 row or 1 column. Part of NIMBLE language.

Usage

asRow(x)

asCol(x)

Arguments

x Numeric to be turned into a single row or column matrix

Details

In the NIMBLE language, some automatic determination of how to turn vectors into single-row or
single-column matrices is done. For example, in A %*% x, where A is a matrix and x a vector, x will
be turned into a single-column matrix unless it is known at compile time that A is a single column,
in which case x will be turned into a single-row matrix. However, if it is desired that x be turned
into a single row but A cannot be determined at compile time to be a single column, then one can
use A %*% asRow(x) to force this conversion.

Author(s)

Perry de Valpine

autoBlock Automated parameter blocking procedure for efficient MCMC sam-
pling

Description

The automated parameter blocking algorithm is no longer actively maintained. In some cases, it
may not operate correctly with more recent system features and/or distributions.

autoBlock 11

Usage

autoBlock(
Rmodel,
autoIt = 20000,
run = list("all", "default"),
setSeed = TRUE,
verbose = FALSE,
makePlots = FALSE,
round = TRUE

)

Arguments

Rmodel A NIMBLE model object, created from nimbleModel.

autoIt The number of MCMC iterations to run intermediate MCMC algorithms, through
the course of the procedure. Default 20,000.

run List of additional MCMC algorithms to compare against the automated blocking
MCMC. These may be specified as: the character string ’all’ to denote blocking
all continuous-valued nodes; the character string ’default’ to denote NIMBLE’s
default MCMC configuration; a named list element consisting of a quoted code
block, which when executed returns an MCMC configuration object for com-
parison; a custom-specificed blocking scheme, specified as a named list element
which itself is a list of character vectors, where each character vector specifies
the nodes in a particular block. Default is c(’all’, ’default’).

setSeed Logical specificying whether to call set.seed(0) prior to beginning the blocking
procedure. Default TRUE.

verbose Logical specifying whether to output considerable details of the automated block
procedure, through the course of execution. Default FALSE.

makePlots Logical specifying whether to plot the hierarchical clustering dendrograms, through
the course of execution. Default FALSE.

round Logical specifying whether to round the final output results to two decimal
places. Default TRUE.

Details

Runs NIMBLE’s automated blocking procedure for a given model object, to dynamically determine
a blocking scheme of the continuous-valued model nodes. This blocking scheme is designed to
produce efficient MCMC sampling (defined as number of effective samples generated per second
of algorithm runtime). See Turek, et al (2015) for details of this algorithm. This also (optionally)
compares this blocked MCMC against several static MCMC algorithms, including all univariate
sampling, blocking of all continuous-valued nodes, NIMBLE’s default MCMC configuration, and
custom-specified blockings of parameters.

This method allows for fine-tuned usage of the automated blocking procedure. However, the main
entry point to the automatic blocking procedure is intended to be through either buildMCMC(...,
autoBlock = TRUE), or configureMCMC(..., autoBlock = TRUE).

12 buildAGHQGrid

Value

Returns a named list containing elements:

• summary: A data frame containing a numerical summary of the performance of all MCMC
algorithms (including that from automated blocking)

• autoGroups: A list specifying the parameter blockings converged on by the automated block-
ing procedure

• conf: A NIMBLE MCMC configuration object corresponding to the results of the automated
blocking procedure

Author(s)

Daniel Turek

References

Turek, D., de Valpine, P., Paciorek, C., and Anderson-Bergman, C. (2015). Automated Parameter
Blocking for Efficient Markov-Chain Monte Carlo Sampling. <arXiv:1503.05621>.

See Also

configureMCMC buildMCMC

BUGSdeclClass-class BUGSdeclClass contains the information extracted from one BUGS
declaration

Description

BUGSdeclClass contains the information extracted from one BUGS declaration

buildAGHQGrid Build Adaptive Gauss-Hermite Quadrature Grid

Description

Create quadrature grid for use in AGHQuad methods in Nimble.

Arguments

d Dimension of quadrature grid being requested.

nQuad Number of quadrature nodes requested on build.

buildAGHQGrid 13

Details

This function is used by used by buildOneAGHQuad1D and buildOneAGHQuad create the quadra-
ture grid using adaptive Gauss-Hermite quadrature. Handles single or multiple dimension grids and
computes both grid locations and weights. Additionally, acts as a cache system to do transforma-
tions, and return marginalized log density.

Any of the input node vectors, when provided, will be processed using nodes <- model$expandNodeNames(nodes),
where nodes may be paramNodes, randomEffectsNodes, and so on. This step allows any of
the inputs to include node-name-like syntax that might contain multiple nodes. For example,
paramNodes = 'beta[1:10]' can be provided if there are actually 10 scalar parameters, ’beta[1]’
through ’beta[10]’. The actual node names in the model will be determined by the exapndNodeNames
step.

Available methods include

• buildAGHQ. Builds a adaptive Gauss-Hermite quadrature grid in d dimensions. Calls buildAGHQOne
to build the one dimensional grid and then expands in each dimension. Some numerical is-
sues occur in Eigen decomposition making the grid weights only accurate up to 35 quadrature
nodes.

• Options to get internally cached values are getGridSize, getModeIndex for when there are
an odd number of quadrature nodes, getLogDensity for the cached values, getAllNodes for
the quadrature grids, getNodes for getting a single indexed nodes, getAllNodesTransformed
for nodes transformed to the parameter scale, getNodesTransformed for a single transformed
node, getAllWeights to get all quadrature weights, getWeights single indexed weight.

• transformGrid(cholNegHess, inner_mode, method) transforms the grid using either cholesky
trasnformations, as default, or spectral that makes use of the Eigen decomposition. For a single
dimension transformGrid1D is used.

• As the log density is evaluated externally, it is saved via saveLogDens, which then is summed
via quadSum.

• buildGrid builds the grid the initial time and is only run once in code. After, the user must
choose to setGridSize to update the grid size.

• check. If TRUE (default), a warning is issued if paramNodes, randomEffectsNodes and/or
calcNodes are provided but seek to have missing elements or unnecessary elements based
on some default inspection of the model. If unnecessary warnings are emitted, simply set
check=FALSE.

• innerOptimControl. A list of control parameters for the inner optimization of Laplace ap-
proximation using optim. See ’Details’ of optim for further information.

• innerOptimMethod. Optimization method to be used in optim for the inner optimization. See
’Details’ of optim. Currently optim in NIMBLE supports: "Nelder-Mead", "BFGS", "CG",
and "L-BFGS-B". By default, method "CG" is used when marginalizing over a single (scalar)
random effect, and "BFGS" is used for multiple random effects being jointly marginalized over.

• innerOptimStart. Choice of starting values for the inner optimization. This could be
"last", "last.best", or a vector of user provided values. "last" means the most recent
random effects values left in the model will be used. When finding the MLE, the most re-
cent values will be the result of the most recent inner optimization for Laplace. "last.best"
means the random effects values corresponding to the largest Laplace likelihood (from any
call to the calcLaplace or calcLogLik method, including during an MLE search) will be

14 buildBootstrapFilter

used (even if it was not the most recent Laplace likelihood). By default, the initial random
effects values will be used for inner optimization.

• outOptimControl. A list of control parameters for maximizing the Laplace log-likelihood
using optim. See ’Details’ of optim for further information.

References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

Jackel, P. (2005). A note on multivariate Gauss-Hermite quadrature. London: ABN-Amro. Re.

buildAuxiliaryFilter Placeholder for buildAuxiliaryFilter

Description

This function has been moved to the ‘nimbleSMC‘ package.

Usage

buildAuxiliaryFilter(...)

Arguments

... arguments

buildBootstrapFilter Placeholder for buildBootstrapFilter

Description

This function has been moved to the ‘nimbleSMC‘ package.

Usage

buildBootstrapFilter(...)

Arguments

... arguments

buildEnsembleKF 15

buildEnsembleKF Placeholder for buildEnsembleKF

Description

This function has been moved to the ‘nimbleSMC‘ package.

Usage

buildEnsembleKF(...)

Arguments

... arguments

buildIteratedFilter2 Placeholder for buildIteratedFilter2

Description

This function has been moved to the ‘nimbleSMC‘ package.

Usage

buildIteratedFilter2(...)

Arguments

... arguments

buildLaplace Laplace approximation and adaptive Gauss-Hermite quadrature

Description

Build a Laplace or AGHQ approximation algorithm for a given NIMBLE model.

16 buildLaplace

Usage

buildLaplace(
model,
paramNodes,
randomEffectsNodes,
calcNodes,
calcNodesOther,
control = list()

)

buildAGHQ(
model,
nQuad = 1,
paramNodes,
randomEffectsNodes,
calcNodes,
calcNodesOther,
control = list()

)

Arguments

model a NIMBLE model object, such as returned by nimbleModel. The model must
have automatic derivatives (AD) turned on, e.g. by using buildDerivs=TRUE in
nimbleModel.

paramNodes a character vector of names of parameter nodes in the model; defaults are pro-
vided by setupMargNodes. Alternatively, paramNodes can be a list in the format
returned by setupMargNodes, in which case randomEffectsNodes, calcNodes,
and calcNodesOther are not needed (and will be ignored).

randomEffectsNodes

a character vector of names of continuous unobserved (latent) nodes to marginal-
ize (integrate) over using Laplace/AGHQ approximation; defaults are provided
by setupMargNodes.

calcNodes a character vector of names of nodes for calculating the integrand for Laplace/AGHQ
approximation; defaults are provided by setupMargNodes. There may be deter-
ministic nodes between paramNodes and calcNodes. These will be included
in calculations automatically and thus do not need to be included in calcNodes
(but there is no problem if they are).

calcNodesOther a character vector of names of nodes for calculating terms in the log-likelihood
that do not depend on any randomEffectsNodes, and thus are not part of the
marginalization, but should be included for purposes of finding the MLE. This
defaults to stochastic nodes that depend on paramNodes but are not part of and
do not depend on randomEffectsNodes. There may be deterministic nodes
between paramNodes and calcNodesOther. These will be included in calcula-
tions automatically and thus do not need to be included in calcNodesOther (but
there is no problem if they are).

buildLaplace 17

control a named list for providing additional settings used in Laplace/AGHQ approxi-
mation. See control section below. Most of these can be updated later with the
‘updateSettings‘ method.

nQuad number of quadrature points for AGHQ (in one dimension). Laplace approx-
imation is AGHQ with ‘nQuad=1‘. Only odd numbers of nodes really make
sense. Often only one or a few nodes can achieve high accuracy. A maximum
of 35 nodes is supported. Note that for multivariate quadratures, the number of
nodes will be (number of dimensions)^nQuad.

buildLaplace and buildAGHQ

buildLaplace creates an object that can run Laplace approximation for a given model or part
of a model. buildAGHQ creates an object that can run adaptive Gauss-Hermite quadrature (AGHQ,
sometimes called "adaptive Gaussian quadrature") for a given model or part of a model. Laplace ap-
proximation is AGHQ with one quadrature point, hence ‘buildLaplace‘ simply calls ‘buildAGHQ‘
with ‘nQuad=1‘. These methods approximate the integration over continuous random effects in a
hierarchical model to calculate the (marginal) likelihood.

buildAGHQ and buildLaplace will by default (unless changed manually via ‘control$split‘) deter-
mine from the model which random effects can be integrated over (marginalized) independently.
For example, in a GLMM with a grouping factor and an independent random effect intercept for
each group, the random effects can be marginalized as a set of univariate approximations rather
than one multivariate approximation. On the other hand, correlated or nested random effects would
require multivariate marginalization.

Maximum likelihood estimation is available for Laplace approximation (‘nQuad=1‘) with univariate
or multivariate integrations. With ‘nQuad > 1‘, maximum likelihood estimation is available only
if all integrations are univariate (e.g., a set of univariate random effects). If there are multivariate
integrations, these can be calculated at chosen input parameters but not maximized over parameters.
For example, one can find the MLE based on Laplace approximation and then increase ‘nQuad‘
(using the ‘updateSettings‘ method below) to check on accuracy of the marginal log likelihood at
the MLE.

Beware that quadrature will use ‘nQuad^k‘ quadrature points, where ‘k‘ is the dimension of each
integration. Therefore quadrature for ‘k‘ greater that 2 or 3 can be slow. As just noted, ‘buildAGHQ‘
will determine independent dimensions of quadrature, so it is fine to have a set of univariate random
effects, as these will each have k=1. Multivariate quadrature (k>1) is only necessary for nested,
correlated, or otherwise dependent random effects.

The recommended way to find the maximum likelihood estimate and associated outputs is by calling
runLaplace or runAGHQ. The input should be the compiled Laplace or AGHQ algorithm object.
This would be produced by running compileNimble with input that is the result of buildLaplace
or buildAGHQ.

For more granular control, see below for methods findMLE and summary. See function summaryLaplace
for an easier way to call the summary method and obtain results that include node names. These
steps are all done within runLaplace and runAGHQ.

The NIMBLE User Manual at r-nimble.org also contains an example of Laplace approximation.

How input nodes are processed

buildLaplace and buildAGHQ make good tries at deciding what to do with the input model and

18 buildLaplace

any (optional) of the node arguments. However, random effects (over which approximate integration
will be done) can be written in models in multiple equivalent ways, and customized use cases may
call for integrating over chosen parts of a model. Hence, one can take full charge of how different
parts of the model will be used.

Any of the input node vectors, when provided, will be processed using nodes <- model$expandNodeNames(nodes),
where nodes may be paramNodes, randomEffectsNodes, and so on. This step allows any of
the inputs to include node-name-like syntax that might contain multiple nodes. For example,
paramNodes = 'beta[1:10]' can be provided if there are actually 10 scalar parameters, ’beta[1]’
through ’beta[10]’. The actual node names in the model will be determined by the exapndNodeNames
step.

In many (but not all) cases, one only needs to provide a NIMBLE model object and then the func-
tion will construct reasonable defaults necessary for Laplace approximation to marginalize over all
continuous latent states (aka random effects) in a model. The default values for the four groups of
nodes are obtained by calling setupMargNodes, whose arguments match those here (except for a
few arguments which are taken from control list elements here).

setupMargNodes tries to give sensible defaults from any combination of paramNodes, randomEffectsNodes,
calcNodes, and calcNodesOther that are provided. For example, if you provide only randomEffectsNodes
(perhaps you want to marginalize over only some of the random effects in your model), setupMargNodes
will try to determine appropriate choices for the others.

setupMargNodes also determines which integration dimensions are conditionally independent, i.e.,
which can be done separately from each other. For example, when possible, 10 univariate ran-
dom effects will be split into 10 univariate integration problems rather than one 10-dimensional
integration problem.

The defaults make general assumptions such as that randomEffectsNodes have paramNodes as
parents. However, The steps for determining defaults are not simple, and it is possible that they will
be refined in the future. It is also possible that they simply don’t give what you want for a particular
model. One example where they will not give desired results can occur when random effects have
no prior parameters, such as ‘N(0,1)‘ nodes that will be multiplied by a scale factor (e.g. sigma) and
added to other explanatory terms in a model. Such nodes look like top-level parameters in terms of
model structure, so you must provide a randomEffectsNodes argument to indicate which they are.

It can be helpful to call setupMargNodes directly to see exactly how nodes will be arranged for
Laplace approximation. For example, you may want to verify the choice of randomEffectsNodes
or get the order of parameters it has established to use for making sense of the MLE and results
from the summary method. One can also call setupMargNodes, customize the returned list, and
then provide that to buildLaplace as paramNodes. In that case, setupMargNodes will not be
called (again) by buildLaplace.

If setupMargNodes is emitting an unnecessary warning, simply use control=list(check=FALSE).

Managing parameter transformations that may be used internally

If any paramNodes (parameters) or randomEffectsNodes (random effects / latent states) have con-
straints on the range of valid values (because of the distribution they follow), they will be used on
a transformed scale determined by parameterTransform. This means the Laplace approximation
itself will be done on the transformed scale for random effects and finding the MLE will be done
on the transformed scale for parameters. For parameters, prior distributions are not included in

buildLaplace 19

calculations, but they are used to determine valid parameter ranges and hence to set up any trans-
formations. For example, if sigma is a standard deviation, you can declare it with a prior such as
sigma ~ dhalfflat() to indicate that it must be greater than 0.

For default determination of when transformations are needed, all parameters must have a prior
distribution simply to indicate the range of valid values. For a param p that has no constraint, a
simple choice is p ~ dflat().

Understanding inner and outer optimizations

Note that there are two numerical optimizations when finding maximum likelihood estimates with
a Laplace or (1D) AGHQ algorithm: (1) maximizing the joint log-likelihood of random effects
and data given a parameter value to construct the approximation to the marginal log-likelihood at
the given parameter value; (2) maximizing the approximation to the marginal log-likelihood over
the parameters. In what follows, the prefix ’inner’ refers to optimization (1) and ’outer’ refers to
optimization (2). Currently both optimizations default to using method "nlminb". However, one
can use other optimizers or simply run optimization (2) manually from R; see the example below.
In some problems, choice of inner and/or outer optimizer can make a big difference for obtaining
accurate results, especially for standard errors. Hence it is worth experimenting if one is in doubt.

control list arguments

The control list allows additional settings to be made using named elements of the list. Most (or
all) of these can be updated later using the ‘updateSettings‘ method. Supported elements include:

• split. If TRUE (default), randomEffectsNodes will be split into conditionally indepen-
dent sets if possible. This facilitates more efficient Laplace or AGHQ approximation be-
cause each conditionally independent set can be marginalized independently. If FALSE,
randomEffectsNodes will be handled as one multivariate block, with one multivariate ap-
proximation. If split is a numeric vector, randomEffectsNodes will be split by calling
split(randomEffectsNodes, control$split). The last option allows arbitrary control over
how randomEffectsNodes are blocked.

• check. If TRUE (default), a warning is issued if paramNodes, randomEffectsNodes and/or
calcNodes are provided but seem to have missing or unnecessary elements based on some de-
fault inspections of the model. If unnecessary warnings are emitted, simply set check=FALSE.

• innerOptimControl. A list (either an R list or a ‘optimControlNimbleList‘) of control pa-
rameters for the inner optimization of Laplace approximation using nimOptim. See ’Details’
of nimOptim for further information. Default is ‘nimOptimDefaultControl()‘.

• innerOptimMethod. Optimization method to be used in nimOptim for the inner optimization.
See ’Details’ of nimOptim. Currently nimOptim in NIMBLE supports: "Nelder-Mead"",
"BFGS", "CG", "L-BFGS-B", "nlminb", "bobyqa", and user-provided optimizers. By default,
method "nlminb" is used for both univariate and multivariate cases. For "nlminb", "bobyqa",
or user-provided optimizers, only a subset of elements of the innerOptimControlList are
supported. (Note that control over the outer optimization method is available as an argument
to ‘findMLE‘). Choice of optimizers can be important and so can be worth exploring.

• innerOptimStart. Method for determining starting values for the inner optimization. Op-
tions are:

20 buildLaplace

– "last.best" (default): use optimized random effects values corresponding to the best
outer optimization (i.e. the largest marginal log likelihood value) so far for each condi-
tionally independent part of the approximation;

– "last": use the result of the last inner optimization;
– "zero": use all zeros;
– "constant": always use the same values, determined by innerOptimStartValues;
– "random": randomly draw new starting values from the model (i.e., from the prior);
– "model": use values for random effects stored in the model, which are determined from

the first call.

Note that "model" and "zero" are shorthand for "constant" with particular choices of
innerOptimStartValues. Note that "last" and "last.best" require a choice for the very
first values, which will come from innerOptimStartValues. The default is innerOptimStart="zero"
and may change in the future.

• innerOptimStartValues. Values for some of innerOptimStart approaches. If a scalar is
provided, that value is used for all elements of random effects for each conditionally indepen-
dent set. If a vector is provided, it must be the length of *all* random effects. If these are
named (by node names), the names will be used to split them correctly among each condition-
ally independent set of random effects. If they are not named, it is not always obvious what
the order should be because it may depend on the conditionally independent sets of random
effects. It should match the order of names returned as part of ‘summaryLaplace‘.

• innerOptimWarning. If FALSE (default), do not emit warnings from the inner optimiza-
tion. Optimization methods may sometimes emit a warning such as for bad parameter values
encountered during the optimization search. Often, a method can recover and still find the op-
timum. In the approximations here, sometimes the inner optimization search can fail entirely,
yet the outer optimization see this as one failed parameter value and can recover. Hence, it is
often desirable to silence warnings from the inner optimizer, and this is done by default. Set
innerOptimWarning=TRUE to see all warnings.

• useInnerCache. If TRUE (default), use caching system for efficiency of inner optimizations.
The caching system records one set of previous parameters and uses the corresponding results
if those parameters are used again (e.g., in a gradient call). This should generally not be
modified.

• outerOptimMethod. Optimization method to be used in nimOptim for the outer optimization.
See ’Details’ of nimOptim. Currently nimOptim in NIMBLE supports: "Nelder-Mead"",
"BFGS", "CG", "L-BFGS-B", "nlminb", "bobyqa", and user-provided optimizers. By default,
method "nlminb" is used for both univariate and multivariate cases, although some problems
may benefit from other choices. For "nlminb", "bobyqa", or user-provided optimizers, only a
subset of elements of the innerOptimControlList are supported. (Note that control over the
outer optimization method is available as an argument to ‘findMLE‘). Choice of optimizers
can be important and so can be worth exploring.

• outerOptimControl. A list of control parameters for maximizing the Laplace log-likelihood
using nimOptim. See ’Details’ of nimOptim for further information.

• computeMethod. There are three approaches available for internal details of how the approx-
imations, and specifically derivatives involved in their calculation, are handled. These are
labeled simply 1, 2, and 3, and the default is 2. The relative performance of the methods will
depend on the specific model. Users wanting to explore efficiency can try switching from

buildLaplace 21

method 2 (default) to methods 1 or 3 and comparing performance. The first Laplace approx-
imation with each method will be (much) slower than subsequent Laplace approximations.
Further details are not provided at this time.

• gridType (relevant only nQuad>1). For multivariate AGHQ, a grid must be constructed based
on the Hessian at the inner mode. Options include "cholesky" (default) and "spectral" (i.e.,
eigenvectors and eigenvalues) for the corresponding matrix decompositions on which the grid
can be based.

end itemize

Available methods

The object returned by buildLaplace or buildAGHQ is a nimbleFunction object with numerous
methods (functions). Here these are described in three tiers of user relevance.

Most useful methods

The most relevant methods to a user are:

• calcLogLik(p, trans=FALSE). Calculate the approximation to the marginal log-likelihood
function at parameter value p, which (if trans is FALSE) should match the order of paramNodes.
For any non-scalar nodes in paramNodes, the order within the node is column-major. The or-
der of names can be obtained from method getNodeNamesVec(TRUE). Return value is the
scalar (approximate, marginal) log likelihood.
If trans is TRUE, then p is the vector of parameters on the transformed scale, if any, de-
scribed above. In this case, the parameters on the original scale (as the model was written)
will be determined by calling the method pInverseTransform(p). Note that the length of the
parameter vector on the transformed scale might not be the same as on the original scale (be-
cause some constraints of non-scalar parameters result in fewer free transformed parameters
than original parameters).

• calcLaplace(p, trans). This is the same as calcLogLik but requires that the approximation
be Laplace (i.e nQuad is 1), and results in an error otherwise.

• findMLE(pStart, hessian). Find the maximum likelihood estimates of parameters using the
approximated marginal likelihood. This can be used if nQuad is 1 (Laplace case) or if nQuad>1
and all marginalizations involve only univariate random effects. Arguments are pStart: ini-
tial parameter values (defaults to parameter values currently in the model); and hessian:
whether to calculate and return the Hessian matrix (defaults to TRUE, which is required for
subsequent use of summary method). Second derivatives in the Hessian are determined by
finite differences of the gradients obtained by automatic differentiation (AD). Return value is
a nimbleList of type optimResultNimbleList, similar to what is returned by R’s optim. See
help(nimOptim). Note that parameters (par) are returned for the natural parameters, i.e. how
they are defined in the model. But the hessian, if requested, is computed for the parameters
as transformed for optimization if necessary. Hence one must be careful interpreting ‘hessian‘
if any parameters have constraints, and the safest next step is to use the summary method or
summaryLaplace function.

• summary(MLEoutput, originalScale, randomEffectsStdError, jointCovariance). Sum-
marize the maximum likelihood estimation results, given object MLEoutput that was returned
by findMLE. The summary can include a covariance matrix for the parameters, the random

22 buildLaplace

effects, or both), and these can be returned on the original parameter scale or on the (poten-
tially) transformed scale(s) used in estimation. It is often preferred instead to call function
(not method) ‘summaryLaplace‘ because this will attach parameter and random effects names
(i.e., node names) to the results.
In more detail, summary accepts the following optional arguments:

– originalScale. Logical. If TRUE, the function returns results on the original scale(s) of
parameters and random effects; otherwise, it returns results on the transformed scale(s).
If there are no constraints, the two scales are identical. Defaults to TRUE.

– randomEffectsStdError. Logical. If TRUE, standard errors of random effects will be
calculated. Defaults to TRUE.

– jointCovariance. Logical. If TRUE, the joint variance-covariance matrix of the param-
eters and the random effects will be returned. If FALSE, the variance-covariance matrix
of the parameters will be returned. Defaults to FALSE.

The object returned by summary is an AGHQuad_summary nimbleList with elements:

– params. A nimbleList that contains estimates and standard errors of parameters (on the
original or transformed scale, as chosen by originalScale).

– randomEffects. A nimbleList that contains estimates of random effects and, if requested
(randomEffectsStdError=TRUE) their standard errors, on original or transformed scale.
Standard errors are calculated following the generalized delta method of Kass and Steffey
(1989).

– vcov. If requested (i.e. jointCovariance=TRUE), the joint variance-covariance matrix of
the parameters and random effects, on original or transformed scale. If jointCovariance=FALSE,
the covariance matrix of the parameters, on original or transformed scale.

– scale. "original" or "transformed", the scale on which results were requested.

Methods for more advanced uses

Additional methods to access or control more details of the Laplace/AGHQ approximation include:

• updateSettings. This provides a single function through which many of the settings de-
scribed above (mostly for the control list) can be later changed. Options that can be changed
include: innerOptimMethod, innerOptimStart, innerOptimStartValues, useInnerCache,
nQuad, gridType, innerOptimControl, outerOptimMethod, outerOptimControl, and computeMethod.
For innerOptimStart, method "zero" cannot be specified but can be achieved by choosing
method "constant" with innerOptimStartValues=0. Only provided options will be modi-
fied. The exceptions are innerOptimControl, outerOptimControl, which are replaced only
when replace_innerOptimControl=TRUE or replace_outerOptimControl=TRUE, respec-
tively.

• getNodeNamesVec(returnParams). Return a vector (>1) of names of parameters/random
effects nodes, according to returnParams = TRUE/FALSE. Use this if there is more than one
node.

• getNodeNameSingle(returnParams). Return the name of a single parameter/random effect
node, according to returnParams = TRUE/FALSE. Use this if there is only one node.

• checkInnerConvergence(message). Checks whether all internal optimizers converged. Re-
turns a zero if everything converged and one otherwise. If message = TRUE, it will print more
details about convergence for each conditionally independent set.

buildLaplace 23

• gr_logLik(p, trans). Gradient of the (approximated) marginal log-likelihood at parameter
value p. Argument trans is similar to that in calcLaplace. If there are multiple parameters,
the vector p is given in the order of parameter names returned by getNodeNamesVec(returnParams=TRUE).

• gr_Laplace(p, trans). This is the same as gr_logLik.

• otherLogLik(p). Calculate the calcNodesOther nodes, which returns the log-likelihood of
the parts of the model that are not included in the Laplace or AGHQ approximation.

• gr_otherLogLik(p). Gradient (vector of derivatives with respect to each parameter) of
otherLogLik(p). Results should match gr_otherLogLik_internal(p) but may be more
efficient after the first call.

Internal or development methods

Some methods are included for calculating the (approximate) marginal log posterior density by in-
cluding the prior distribution of the parameters. This is useful for finding the maximum a posteriori
probability (MAP) estimate. Currently these are provided for point calculations without estimation
methods.

• calcPrior_p(p). Log density of prior distribution.

• calcPrior_pTransformed(pTransform). Log density of prior distribution on transformed
scale, includes the Jacobian.

• calcPostLogDens(p). Marginal log posterior density in terms of the parameter p.

• calcPostLogDens_pTransformed (pTransform). Marginal log posterior density in terms of
the transformed parameter, which includes the Jacobian transformation.

• gr_postLogDens_pTransformed(pTransform). Graident of marginal log posterior density
on the transformed scale. Other available options that are used in the derivative for more
flexible include logDetJacobian(pTransform) and gr_logDeJacobian(pTransform), as
well as gr_prior(p).

Finally, methods that are primarily for internal use by other methods include:

• gr_logLik_pTransformed. Gradient of the Laplace approximation (calcLogLik_pTransformed(pTransform))
at transformed (unconstrained) parameter value pTransform.

• pInverseTransform(pTransform). Back-transform the transformed parameter value pTransform
to original scale.

• derivs_pInverseTransform(pTransform, order). Derivatives of the back-transformation
(i.e. inverse of parameter transformation) with respect to transformed parameters at pTransform.
Derivative order is given by order (any of 0, 1, and/or 2).

• reInverseTransform(reTrans). Back-transform the transformed random effects value reTrans
to original scale.

• derivs_reInverseTransform(reTrans, order). Derivatives of the back-transformation
(i.e. inverse of random effects transformation) with respect to transformed random effects
at reTrans. Derivative order is given by order (any of 0, 1, and/or 2).

• optimRandomEffects(pTransform). Calculate the optimized random effects given trans-
formed parameter value pTransform. The optimized random effects are the mode of the
conditional distribution of random effects given data at parameters pTransform, i.e. the cal-
culation of calcNodes.

24 buildLaplace

• inverse_negHess(p, reTransform). Calculate the inverse of the negative Hessian matrix of
the joint (parameters and random effects) log-likelihood with respect to transformed random
effects, evaluated at parameter value p and transformed random effects reTransform.

• hess_logLik_wrt_p_wrt_re(p, reTransform). Calculate the Hessian matrix of the joint
log-likelihood with respect to parameters and transformed random effects, evaluated at pa-
rameter value p and transformed random effects reTransform.

• one_time_fixes(). Users never need to run this. Is is called when necessary internally to fix
dimensionality issues if there is only one parameter in the model.

• calcLogLik_pTransformed(pTransform). Laplace approximation at transformed (uncon-
strained) parameter value pTransform. To make maximizing the Laplace likelihood uncon-
strained, an automated transformation via parameterTransform is performed on any param-
eters with constraints indicated by their priors (even though the prior probabilities are not
used).

• gr_otherLogLik_internal(p). Gradient (vector of derivatives with respect to each param-
eter) of otherLogLik(p). This is obtained using automatic differentiation (AD) with single-
taping. First call will always be slower than later calls.

• cache_outer_logLik(logLikVal). Save the marginal log likelihood value to the inner
Laplace mariginlization functions to track the outer maximum internally.

• reset_outer_inner_logLik(). Reset the internal saved maximum marginal log likelihood.

• get_inner_cholesky(atOuterMode = integer(0, default = 0)). Returns the cholesky of
the negative Hessian with respect to the random effects. If atOuterMode = 1 then returns the
value at the overall best marginal likelihood value, otherwise atOuterMode = 0 returns the
last.

• get_inner_mode(atOuterMode = integer(0, default = 0)). Returns the mode of the ran-
dom effects for either the last call to the innner quadrature functions (atOuterMode = 0), or
the last best value for the marginal log likelihood, atOuterMode = 1.

Author(s)

Wei Zhang, Perry de Valpine, Paul van Dam-Bates

References

Kass, R. and Steffey, D. (1989). Approximate Bayesian inference in conditionally independent
hierarchical models (parametric empirical Bayes models). Journal of the American Statistical As-
sociation, 84(407), 717-726.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

Jackel, P. (2005). A note on multivariate Gauss-Hermite quadrature. London: ABN-Amro. Re.

Skaug, H. and Fournier, D. (2006). Automatic approximation of the marginal likelihood in non-
Gaussian hierarchical models. Computational Statistics & Data Analysis, 56, 699-709.

Examples

pumpCode <- nimbleCode({
for (i in 1:N){

buildLiuWestFilter 25

theta[i] ~ dgamma(alpha, beta)
lambda[i] <- theta[i] * t[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0)
beta ~ dgamma(0.1, 1.0)

})
pumpConsts <- list(N = 10, t = c(94.3, 15.7, 62.9, 126, 5.24, 31.4, 1.05, 1.05, 2.1, 10.5))
pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))
pumpInits <- list(alpha = 0.1, beta = 0.1, theta = rep(0.1, pumpConsts$N))
pump <- nimbleModel(code = pumpCode, name = "pump", constants = pumpConsts,

data = pumpData, inits = pumpInits, buildDerivs = TRUE)

Build Laplace approximation
pumpLaplace <- buildLaplace(pump)

Not run:
Compile the model
Cpump <- compileNimble(pump)
CpumpLaplace <- compileNimble(pumpLaplace, project = pump)
Calculate MLEs of parameters
MLEres <- CpumpLaplace$findMLE()
Calculate estimates and standard errors for parameters and random effects on original scale
allres <- CpumpLaplace$summary(MLEres, randomEffectsStdError = TRUE)

Change the settings and also illustrate runLaplace
CpumpLaplace$updateSettings(innerOptimControl = list(maxit = 1000),

replace_innerOptimControl)
newres <- runLaplace(CpumpLaplace)

Illustrate use of the component log likelihood and gradient functions to
run an optimizer manually from R.
Use nlminb to find MLEs
MLEres.manual <- nlminb(c(0.1, 0.1),

function(x) -CpumpLaplace$calcLogLik(x),
function(x) -CpumpLaplace$gr_Laplace(x))

End(Not run)

buildLiuWestFilter Placeholder for buildLiuWestFilter

Description

This function has been moved to the ‘nimbleSMC‘ package.

Usage

buildLiuWestFilter(...)

26 buildMCEM

Arguments

... arguments

buildMCEM Builds an MCEM algorithm for a given NIMBLE model

Description

Takes a NIMBLE model (with some missing data, aka random effects or latent state nodes) and
builds a Monte Carlo Expectation Maximization (MCEM) algorithm for maximum likelihood esti-
mation. The user can specify which latent nodes are to be integrated out in the E-Step, or default
choices will be made based on model structure. All other stochastic non-data nodes will be maxi-
mized over. The E-step is done with a sample from a nimble MCMC algorithm. The M-step is done
by a call to optim.

Usage

buildMCEM(
model,
paramNodes,
latentNodes,
calcNodes,
calcNodesOther,
control = list(),
...

)

Arguments

model a NIMBLE model object, either compiled or uncompiled.

paramNodes a character vector of names of parameter nodes in the model; defaults are pro-
vided by setupMargNodes. Alternatively, paramNodes can be a list in the for-
mat returned by setupMargNodes, in which case latentNodes, calcNodes, and
calcNodesOther are not needed (and will be ignored).

latentNodes a character vector of names of unobserved (latent) nodes to marginalize (sum or
integrate) over; defaults are provided by setupMargNodes (as the randomEffectsNodes
in its return list).

calcNodes a character vector of names of nodes for calculating components of the full-data
likelihood that involve latentNodes; defaults are provided by setupMargNodes.
There may be deterministic nodes between paramNodes and calcNodes. These
will be included in calculations automatically and thus do not need to be in-
cluded in calcNodes (but there is no problem if they are).

calcNodesOther a character vector of names of nodes for calculating terms in the log-likelihood
that do not depend on any latentNodes, and thus are not part of the marginal-
ization, but should be included for purposes of finding the MLE. This defaults to

buildMCEM 27

stochastic nodes that depend on paramNodes but are not part of and do not de-
pend on latentNodes. There may be deterministic nodes between paramNodes
and calcNodesOther. These will be included in calculations automatically and
thus do not need to be included in calcNodesOther (but there is no problem if
they are).

control a named list for providing additional settings used in MCEM. See control sec-
tion below.

... provided only as a means of checking if a user is using the deprecated interface
to ‘buildMCEM‘ in nimble versions < 1.2.0.

Details

buildMCEM is a nimbleFunction that creates an MCEM algorithm for a model and choices (perhaps
default) of nodes in different roles in the model. The MCEM can then be compiled for fast execution
with a compiled model.

Note that buildMCEM was re-written for nimble version 1.2.0 and is not backward-compatible with
previous versions. The new version is considered to be in beta testing.

Denote data by Y, latent states (or missing data) by X, and parameters by T. MCEM works by the
following steps, starting from some T:

1. Draw a sample of size M from P(X | Y, T) using MCMC.

2. Update T to be the maximizer of E[log P(X, Y | T)] where the expectation is approximated as
a Monte Carlo average over the sample from step(1)

3. Repeat until converged.

The default version of MCEM is the ascent-based MCEM of Caffo et al. (2015). This attempts to
update M when necessary to ensure that step 2 really moves uphill given that it is maximizing a
Monte Carlo approximation and could accidently move downhill on the real surface of interest due
to Monte Carlo error. The main tuning parameters include alpha, beta, gamma, Mfactor, C, and
tol (tolerance).

If the model supports derivatives via nimble’s automatic differentiation (AD) (and buildDerivs=TRUE
in nimbleModel), the maximization step can use gradients from AD. You must manually set useDerivs=FALSE
in the control list if derivatives aren’t supported or if you don’t want to use them.

In the ascent-based method, after maximization in step 2, the Monte Carlo standard error of the
uphill movement is estimated. If the standardized uphill step is bigger than 0 with Type I error rate
alpha, the iteration is accepted and the algorithm continues. Otherwise, it is not certain that step
2 really moved uphill due to Monte Carlo error, so the MCMC sample size M is incremented by a
fixed factor (e.g. 0.33 or 0.5, called Mfactor in the control list), the additional samples are added by
continuing step 1, and step 2 is tried again. If the Monte Carlo noise still overwhelms the magnitude
of uphill movement, the sample size is increased again, and so on. alpha should be between 0 and
0.5. A larger value than usually used for inference is recommended so that there is an easy threshold
to determine uphill movement, which avoids increasing M prematurely. M will never be increased
above maxM.

Convergence is determined in a similar way. After a definite move uphill, we determine if the uphill
increment is less than tol, with Type I error rate gamma. (But if M hits a maximum value, the
convergence criterion changes. See below.)

28 buildMCEM

beta is used to help set M to a minimal level based on previous iterations. This is a desired Type
II error rate, assuming an uphill move and standard error based on the previous iteration. Set
adjustM=FALSE in the control list if you don’t want this behavior.

There are some additional controls on convergence for practical purposes. Set C in the control list
to be the number of times the convergence criterion mut be satisfied in order to actually stop. E.g
setting C=2 means there will always be a restart after the first convergence.

One problem that can occur with ascent-based MCEM is that the final iteration can be very slow if
M must become very large to satisfy the convergence criterion. Indeed, if the algorithm starts near
the MLE, this can occur. Set maxM in the control list to set the MCMC sample size that should never
be exceeded.

If M==maxM, a softer convergence criterion is used. This second convergence criterion is to stop if
we can’t be sure we moved uphill using Type I error rate delta. This is a soft criterion because for
small delta, Type II errors will be common (e.g. if we really did move uphill but can’t be sure from
the Monte Carlo sample), allowing the algorithm to terminate. One can continue the algorithm from
where it stopped, so it is helpful to not have it get stuck when having a very hard time with the first
(stricter) convergence criterion.

All of alpha, beta, delta, and gamma are utilized based on asymptotic arguments but in practice
must be chosen heuristically. In other words, their theoretical basis does not exactly yield practical
advice on good choices for efficiency and accuracy, so some trial and error will be needed.

It can also be helpful to set a minimum and maximum of allowed iterations (of steps 1 and 2
above). Setting minIter>1 in the control list can sometimes help avoid a false convergence on the
first iteration by forcing at least one more iteration. Setting maxIter provides a failsafe on a stuck
run.

If you don’t want the ascent-based method at all and simply want to run a set of iterations, set
ascent=FALSE in the control list. This will use the second (softer) convergence criterion.

Parameters to be maximized will by default be handled in an unconstrained parameter space, trans-
formed if necessary by a parameterTransform object. In that case, the default optim method will
be "BFGS" and can can be changed by setting optimMehod in the control list. Set useTransform=FALSE
in the control list if you don’t want the parameters transformed. In that case the default optimMethod
will be "L-BFGS-B" if there are any actual constraints, and you can provide a list of boxConstraints
in the control list. (Constraints may be determined by priors written in the model for parameters,
even though their priors play no other role in MLE. E.g. sigma ~ halfflat() indicates sigma > 0).

Most of the control list elements can be overridden when calling the findMLE method. The findMLE
argument continue=TRUE results in attempting to continue the algorithm where the previous call
finished, including whatever settings were in use.

See setupMargNodes (which is called with the given arguments for paramNodes, calcNodes, and
calcNodesOther; and with allowDiscreteLatent=TRUE, randomEffectsNodes=latentNodes,
and check=check) for more about how the different groups of nodes are determined. In gen-
eral, you can provide none, one, or more of the different kinds of nodes and setupMargNodes
will try to determine the others in a sensible way. However, note that this cannot work for all
ways of writing a model. One key example is that if random (latent) nodes are written as top-
level nodes (e.g. following N(0,1)), they appear structurally to be parameters and you must tell
buildMCEM that they are latentNodes. The various "Nodes" arguments will all be passed through
model$expandNodeNames, allowing for example simply "x" to be provided when there are many
nodes within "x".

buildMCEM 29

Estimating the Monte Carlo standard error of the uphill step is not trivial because the sample was
obtained by MCMC and so likely is autocorrelated. This is done by calling whatever function in R’s
global environment is called "MCEM_mcse", which is required to take two arguments: samples
(which will be a vector of the differences in log(P(Y, X | T)) between the new and old values of T,
across the sample of X) and m, the sample size. It must return an estimate of the standard error of the
mean of the sample. NIMBLE provides a default version (exported from the package namespace),
which calls mcmcse::mcse with method "obm". Simply provide a different function with this name
in your R session to override NIMBLE’s default.

Control list details

The control list accepts the following named elements:

• initM initial MCMC sample size, M. Default=1000.

• Mfactor Factor by which to increase MCMC sample size when step 2 results in noise over-
whelming the uphill movement. The new M will be 1+Mfactor)*M (rounded up). Mfactor is
1/k of Caffo et al. (2015). Default=1/3.

• maxM Maximum allowed value of M (see above). Default=initM*20.

• burnin Number of burn-in iterations for the MCMC in step 1. Note that the initial states of
one MCMC will be the last states from the previous MCMC, so they will often be good initial
values after multiple iterations. Default=500.

• thin Thinning interval for the MCMC in step 1. Default=1.

• alpha Type I error rate for determining when step 2 has moved uphill. See above. De-
fault=0.25.

• beta Used for determining a minimal value of M based on previous iteration, if adjustM is
TRUE. beta is a desired Type II error rate for determining uphill moves. Default=0.25.

• delta Type I error rate for the soft convergence approach (second approach above). De-
fault=0.25.

• gamma Type I error rate for determining when step 2 has moved less than tol uphill, in which
case ascent-based convergence is achieved (first approach above). Default=0.05.

• buffer A small amount added to lower box constraints and substracted from upper box con-
straints for all parameters, relevant only if useTransform=FALSE and some parameters do
have boxConstraints set or have bounds that can be determined from the model. Default=1e-
6.

• tol Ascent-based convergence tolerance. Default=0.001.

• ascent Logical to determine whether to use the ascent-based method of Caffo et al. De-
fault=TRUE.

• C Number of convergences required to actually stop the algorithm. Default = 1.

• maxIter Maximum number of MCEM iterations to run.

• minIter Minimum number of MCEM iterations to run.

• adjustM Logical indicating whether to see if M needs to be increased based on statistical
power argument in each iteration (using beta). Default=TRUE.

• verbose Logical indicating whether verbose output is desired. Default=TRUE.

30 buildMCEM

• MCMCprogressBar Logical indicating whether MCMC progress bars should be shown for ev-
ery iteration of step 1. This argument is passed to configureMCMC, or to config if provided.
Default=TRUE.

• derivsDelta If AD derivatives are not used, then the method vcov must use finite difference
derivatives to implement the method of Louis (1982). The finite differences will be delta or
delta/2 for various steps. This is the same for all dimensions. Default=0.0001.

• mcmcControl This is passed to configureMCMC, or config if provided, as the control argu-
ment. i.e. control=mcmcControl.

• boxContrainst List of box constraints for the nodes that will be maximized over, only rel-
evant if useTransform=FALSE and forceNoConstraints=FALSE (and ignored otherwise).
Each constraint is a list in which the first element is a character vector of node names to
which the constraint applies and the second element is a vector giving the lower and upper
limits. Limits of -Inf or Inf are allowed. Any nodes that are not given constrains will have
their constraints automatically determined by NIMBLE. See above. Default=list().

• forceNoConstraints Logical indicating whether to force ignoring constraints even if they
might be necessary. Default=FALSE.

• useTransform Logical indicating whether to use a parameter transformation (see parameterTransform)
to create an unbounded parameter space for the paramNodes. This allows unconstrained max-
imization algorithms to be used. Default=TRUE.

• check Logical passed as the check argument to setupMargNodes. Default=TRUE.

• useDerivs Logical indicating whether to use AD. If TRUE, the model must have been build
with ‘buildDerivs=TRUE‘. It is not automatically determined from the model whether deriva-
tives are supported. Default=TRUE.

• config Function to create the MCMC configuration used for step 1. The MCMC configuration
is created by calling

config(model, nodes = latentNodes, monitors = latentNodes,
thin = thinDefault, control = mcmcControl, print = FALSE)

The default for config (if it is missing) is configureMCMC, which is nimble’s general default
MCMC configuration function.

Methods in the returned algorithm

The object returned by buildMCEM is a nimbleFunction object with the following methods

• findMLE is the main method of interest, launching the MCEM algorithm. It takes the following
arguments:

– pStart. Vector of initial parameter values. If omitted, the values currently in the model
object are used.

– returnTrans. Logical indicating whether to return parameters in the transformed space,
if a parameter transformation is in use. Default=FALSE.

– continue. Logical indicating whether to continue the MCEM from where the last call
stopped. In addition, if TRUE, any other control setting provided in the last call will
be used again. If FALSE, all control settings are reset to the values provided when
buildMCEM was called. Any control settings provided in the same call as continue=TRUE
will over-ride these behaviors and be used in the continued run.

buildMCEM 31

– All run-time control settings available in the control list for buildMCEM (except for
buffer, boxConstraints, forceNoConstraints, useTransform, and useDerivs) are
accepted as individual arguments to over-ride the values provided in the control list.

findMLE returns on object of class optimResultNimbleList with the results of the final op-
timization of step 2. The par element of this list is the vector of maximum likelihood (MLE)
parameters.

• vcov computes the approximate variance-covariance matrix of the MLE using the method of
Louis (1982). It takes the following arguments:

– params. Vector of parameters at which to compute the Hessian matrix used to obtain the
vcov result. Typically this will be MLE$par, if MLE is the output of findMLE.

– trans. Logical indicating whether params is on the transformed prameter scale, if a
parameter transformation is in use. Typically this should be the same as the returnTrans
argument to findMLE. Default=FALSE.

– returnTrans. Logical indicting whether the vcov result should be for the transformed
parameter space. Default matches trans.

– M. Number of MCMC samples to obtain if resetSamples=TRUE. Default is the final value
of M from the last call to findMLE. It can be helpful to increase M to obtain a more accurate
vcov result (i.e. with less Monte Carlo noise).

– resetSamples. Logical indicating whether to generate a new MCMC sample from P(X
| Y, T), where T is params. If FALSE, the last sample from findMLE will be used. If
MLE convergence was reasonable, this sample can be used. However, if the last MCEM
step made a big move in parameter space (e.g. if convergence was not achieved), the last
MCMC sample may not be accurate for obtaining vcov. Default=FALSE.

– atMLE. Logical indicating whether you believe the params represents the MLE. If TRUE,
one part of the computation will be skipped because it is expected to be 0 at the MLE. If
there are parts of the model that are not connected to the latent nodes, i.e. of calcNodesOther
is not empty, then atMLE will be ignored and set to FALSE. Default=FALSE. It is not re-
ally worth using TRUE unless you are confident and the time saving is meaningful, which
is not very likely. In other words, this argument is provided for technical completeness.

vcov returns a matrix that is the inverse of the negative Hessian of the log likelihood surface,
i.e. the usual asymptotic approximation of the parameter variance-covariance matrix.

• doMCMC. This method runs the MCMC to sample from P(X | Y, T). One does not need to
call this, as it is called via the MCEM algorithm in findMLE. This method is provided for
users who want to use the MCMC for latent states directly. Samples should be retrieved by
as.matrix(MCEM$mvSamples), where MCEM is the (compiled or uncompiled) MCEM algo-
rithm object. This method takes the following arguments:

– M. MCMC sample size.
– thin. MCMC thinning interval.
– reset. Logical indicating whether to reset the MCMC (passed to the MCMC run method

as reset).

• transform and inverseTransform. Convert a parameter vector to an unconstrained parame-
ter space and vice-versa, if useTransform=TRUE in the call to buildDerivs.

• resetControls. Reset all control arguments to the values provided in the call to buildMCEM.
The user does not normally need to call this.

32 buildMCEM

Author(s)

Perry de Valpine, Clifford Anderson-Bergman and Nicholas Michaud

References

Caffo, Brian S., Wolfgang Jank, and Galin L. Jones (2005). Ascent-based Monte Carlo expectation-
maximization. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2),
235-251.

Louis, Thomas A (1982). Finding the Observed Information Matrix When Using the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 44(2), 226-233.

Examples

Not run:
pumpCode <- nimbleCode({
for (i in 1:N){

theta[i] ~ dgamma(alpha,beta);
lambda[i] <- theta[i]*t[i];
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0);
beta ~ dgamma(0.1,1.0);

})

pumpConsts <- list(N = 10,
t = c(94.3, 15.7, 62.9, 126, 5.24,

31.4, 1.05, 1.05, 2.1, 10.5))

pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))

pumpInits <- list(alpha = 1, beta = 1,
theta = rep(0.1, pumpConsts$N))

pumpModel <- nimbleModel(code = pumpCode, name = 'pump', constants = pumpConsts,
data = pumpData, inits = pumpInits,
buildDerivs=TRUE)

pumpMCEM <- buildMCEM(model = pumpModel)

CpumpModel <- compileNimble(pumpModel)

CpumpMCEM <- compileNimble(pumpMCEM, project=pumpModel)

MLE <- CpumpMCEM$findMLE()
vcov <- CpumpMCEM$vcov(MLE$par)

End(Not run)

buildMCMC 33

buildMCMC Create an MCMC object from a NIMBLE model, or an MCMC config-
uration object

Description

First required argument, which may be of class MCMCconf (an MCMC configuration object), or
inherit from class modelBaseClass (a NIMBLE model object). Returns an uncompiled executable
MCMC object. See details.

Usage

buildMCMC(conf, print, ...)

Arguments

conf Either an MCMC configuration object of class MCMCconf or a NIMBLE model
object. An MCMC configuration object would be returned from configureMCMC
and contains information on the model, samplers, monitors, and thinning inter-
vals to be used. Alternatively, conf may a NIMBLE model object, in which case
default configuration from calling configureMCMC(model, ...l) will be used.

print A logical argument, specifying whether to print details of the MCMC samplers
and monitors.

... Additional arguments to be passed to configureMCMC if conf is a NIMBLE
model object (see help(configureMCMC)).

Details

Calling buildMCMC(conf) will produce an uncompiled MCMC object. The object contains several
methods, including the main run function for running the MCMC, a getTimes function for deter-
mining the computation time spent in each sampler (see ’getTimes’ section below), and functions
related to WAIC (getWAIC, getWAICdetails, calculateWAIC (see help(waic)).

The uncompiled run function will have arguments:

niter: The number of iterations to run the MCMC.

nburnin: Number of initial, pre-thinning, MCMC iterations to discard (default = 0).

thin: The thinning interval for the monitors that were specified in the MCMC configuration. If
this argument is provided at MCMC runtime, it will take precedence over the thin interval that was
specified in the MCMC configuration. If omitted, the thin interval from the MCMC configuration
will be used.

thin2: The thinning interval for the second set of monitors (monitors2) that were specified in the
MCMC configuration. If this argument is provided at MCMC runtime, it will take precedence over
the thin2 interval that was specified in the MCMC configuration. If omitted, the thin2 interval
from the MCMC configuration will be used.

reset: Boolean specifying whether to reset the internal MCMC sampling algorithms to their initial
state (in terms of self-adapting tuning parameters), and begin recording posterior sample chains

34 buildMCMC

anew. Specifying reset = FALSE allows the MCMC algorithm to continue running from where it
left off, appending additional posterior samples to the already existing sample chains. Generally,
reset = FALSE should only be used when the MCMC has already been run (default = TRUE).

resetMV: Boolean specifying whether to begin recording posterior sample chains anew. This argu-
ment is only considered when using reset = FALSE. Specifying reset = FALSE, resetMV = TRUE
allows the MCMC algorithm to continue running from where it left off, but without appending the
new posterior samples to the already existing samples, i.e. all previously obtained samples will be
erased. This option can help reduce memory usage during burn-in (default = FALSE).

resetWAIC: Boolean specifying whether to reset the WAIC summary statistics to their initial states
and thereby begin the WAIC calculation anew (default = TRUE). Specifying resetWAIC = FALSE
allows the WAIC calculation to continue running from where it left off.

initializeModel: Boolean specifying whether to run the initializeModel routine on the underlying
model object, prior to beginning MCMC sampling (default = TRUE).

chain: Integer specifying the MCMC chain number. The chain number is passed to each MCMC
sampler’s before_chain and after_chain methods. The value for this argument is specified automat-
ically from invocation via runMCMC, and genernally need not be supplied when calling mcmc$run
(default = 1). time: Boolean specifying whether to record runtimes of the individual internal
MCMC samplers. When time = TRUE, a vector of runtimes (measured in seconds) can be extracted
from the MCMC using the method mcmc$getTimes() (default = FALSE).

progressBar: Boolean specifying whether to display a progress bar during MCMC execution
(default = TRUE). The progress bar can be permanently disabled by setting the system option
nimbleOptions(MCMCprogressBar = FALSE).

Samples corresponding to the monitors and monitors2 from the MCMCconf are stored into the
interval variables mvSamples and mvSamples2, respectively. These may be accessed and con-
verted into R matrix or list objects via: as.matrix(mcmc$mvSamples) as.list(mcmc$mvSamples)
as.matrix(mcmc$mvSamples2) as.list(mcmc$mvSamples2)

The uncompiled MCMC function may be compiled to a compiled MCMC object, taking care
to compile in the same project as the R model object, using: Cmcmc <- compileNimble(Rmcmc,
project = Rmodel)

The compiled object will function identically to the uncompiled object except acting on the com-
piled model object.

Timing the MCMC samplers

If you want to obtain the computation time spent in each sampler, you can set time=TRUE as a
run-time argument to run() and then use the method getTimes() to obtain the times.

Calculating WAIC

Please see help(waic) for more information.

Author(s)

Daniel Turek

buildMCMC 35

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

Ariyo, O., Quintero, A., Munoz, J., Verbeke, G. and Lesaffre, E. (2019). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics 47: 890-913.

See Also

configureMCMC runMCMC nimbleMCMC

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, 1)
x ~ dnorm(mu, 1)
y ~ dnorm(x, 1)

})
Rmodel <- nimbleModel(code, data = list(y = 0))
conf <- configureMCMC(Rmodel, monitors = c('mu', 'x'), enableWAIC = TRUE)
Rmcmc <- buildMCMC(conf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project=Rmodel)

Running the MCMC with `run`
Cmcmc$run(10000)
samples <- as.matrix(Cmcmc$mvSamples)
samplesAsList <- as.list(Cmcmc$mvSamples)
head(samples)

Getting WAIC
waicInfo <- Cmcmc$getWAIC()
waicInfo$WAIC
waicInfo$pWAIC

Timing the samplers (must set `time = TRUE` when running the MCMC)
Cmcmc$run(10000, time = TRUE)
Cmcmc$getTimes()

End(Not run)

36 calculateWAIC

calculateWAIC Calculating WAIC using an offline algorithm

Description

In addition to the core online algorithm, NIMBLE implements an offline WAIC algorithm that can
be computed on the results of an MCMC. In contrast to NIMBLE’s built-in online WAIC, offline
WAIC can compute only conditional WAIC and does not allow for grouping data nodes.

Usage

calculateWAIC(mcmc, model, nburnin = 0, thin = 1)

Arguments

mcmc An MCMC object (compiled or uncompiled) or matrix or dataframe of MCMC
samples as the first argument of calculateWAIC.

model A model (compiled or uncompiled) as the second argument of calculateWAIC.
Only required if mcmc is a matrix/dataframe of samples.

nburnin The number of pre-thinning MCMC samples to remove from the beginning of
the posterior samples for offline WAIC calculation via calculateWAIC (default
= 0). These samples are discarded in addition to any burn-in specified when
running the MCMC.

thin Thinning factor interval to apply to the samples for offline WAIC calculation
using calculateWAIC (default = 1, corresponding to no thinning).

Details

The ability to calculate WAIC post hoc after all MCMC sampling has been done has certain ad-
vantages (e.g., allowing a user to calculate WAIC from MCMC chains run separately) in addition
to providing compatibility with versions of NIMBLE before 0.12.0. This functionality includes the
ability to call the calculateWAIC function on an MCMC object or matrix of samples after running
an MCMC and without setting up the MCMC initially to use WAIC.

Important: The necessary variables to compute WAIC (all stochastic parent nodes of the data nodes)
must have been monitored when setting up the MCMC.

Also note that while the model argument can be either a compiled or uncompiled model, the model
must have been compiled prior to calling calculateWAIC.

See help(waic) for details on using NIMBLE’s recommended online algorithm for WAIC.

Offline WAIC (WAIC computed after MCMC sampling)

As an alternative to online WAIC, NIMBLE also provides a function, calculateWAIC, that can be
called on an MCMC object or a matrix of samples, after running an MCMC. This function does
not require that one set enableWAIC = TRUE nor WAIC = TRUE when calling runMCMC. The function
checks that the necessary variables were monitored in the MCMC and returns an error if they were

calculateWAIC 37

not. This function behaves identically to the calculateWAIC method of an MCMC object. Note
that to use this function when using nimbleMCMC one would need to build the model outside of
nimbleMCMC.

The calculateWAIC function requires either an MCMC object or a matrix (or dataframe) of poste-
rior samples plus a model object. In addition, one can provide optional burnin and thin arguments.

In addition, for compatibility with older versions of NIMBLE (prior to v0.12.0), one can also use
the calculateWAIC method of the MCMC object to calculate WAIC after all sampling has been
completed.

The calculateWAIC() method accepts a single argument, nburnin, equivalent to the nburnin
argument of the calculateWAIC function described above.

The calculateWAIC method can only be used if the enableWAIC argument to configureMCMC or to
buildMCMC is set to TRUE, or if the NIMBLE option enableWAIC is set to TRUE. If a user attempts to
call calculateWAIC without having set enableWAIC = TRUE (either in the call to configureMCMC,
or buildMCMC, or as a NIMBLE option), an error will occur.

The calculateWAIC function and method calculate the WAIC based on Equations 5, 12, and 13 in
Gelman et al. (2014) (i.e., using pWAIC2).

Note that there is not a unique value of WAIC for a model. The calculateWAIC function and
method only provide the conditional WAIC, namely the version of WAIC where all parameters
directly involved in the likelihood are treated as theta for the purposes of Equation 5 from Gelman
et al. (2014). As a result, the user must set the MCMC monitors (via the monitors argument) to
include all stochastic nodes that are parents of any data nodes; by default the MCMC monitors are
only the top-level nodes of the model. For more detail on the use of different predictive distributions,
see Section 2.5 from Gelman et al. (2014) or Ariyo et al. (2019). Also note that WAIC relies on
a partition of the observations, i.e., ’pointwise’ prediction. In calculateWAIC the sum over log
pointwise predictive density values treats each data node as contributing a single value to the sum.
When a data node is multivariate, that data node contributes a single value to the sum based on
the joint density of the elements in the node. Note that if one wants the WAIC calculation via
calculateWAIC to be based on the joint predictive density for each group of observations (e.g.,
grouping the observations from each person or unit in a longitudinal data context), one would need
to use a multivariate distribution for the observations in each group (potentially by writing a user-
defined distribution).

For more control over and flexibility in how WAIC is calculated, see help(waic).

Author(s)

Joshua Hug and Christopher Paciorek

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

Ariyo, O., Quintero, A., Munoz, J., Verbeke, G. and Lesaffre, E. (2019). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics 47: 890-913.

38 CAR-Normal

Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27: 1413-1432.

Hug, J.E. and Paciorek, C.J. (2021). A numerically stable online implementation and exploration of
WAIC through variations of the predictive density, using NIMBLE. arXiv e-print <arXiv:2106.13359>.

See Also

waic configureMCMC buildMCMC runMCMC nimbleMCMC

Examples

code <- nimbleCode({
for(j in 1:J) {
for(i in 1:n)

y[j, i] ~ dnorm(mu[j], sd = sigma)
mu[j] ~ dnorm(mu0, sd = tau)

}
tau ~ dunif(0, 10)
sigma ~ dunif(0, 10)

})
J <- 5
n <- 10
y <- matrix(rnorm(J*n), J, n)
Rmodel <- nimbleModel(code, constants = list(J = J, n = n), data = list(y = y),

inits = list(tau = 1, sigma = 1))

Make sure the needed variables are monitored.
Only conditional WAIC without data grouping is available via this approach.
conf <- configureMCMC(Rmodel, monitors = c('mu', 'sigma'))
Not run:
Cmodel <- compileNimble(Rmodel)
Rmcmc <- buildMCMC(conf)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
output <- runMCMC(Cmcmc, niter = 1000)
calculateWAIC(Cmcmc) # Can run on the MCMC object
calculateWAIC(output, Rmodel) # Can run on the samples directly

Apply additional burnin (additional to any burnin already done in the MCMC.
calculateWAIC(Cmcmc, burnin = 500)

End(Not run)

CAR-Normal The CAR-Normal Distribution

Description

Density function and random generation for the improper (intrinsic) Gaussian conditional autore-
gressive (CAR) distribution.

CAR-Normal 39

Usage

dcar_normal(
x,
adj,
weights = adj/adj,
num,
tau,
c = CAR_calcNumIslands(adj, num),
zero_mean = 0,
log = FALSE

)

rcar_normal(
n = 1,
adj,
weights = adj/adj,
num,
tau,
c = CAR_calcNumIslands(adj, num),
zero_mean = 0

)

Arguments

x vector of values.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

weights vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. If omitted, all weights are taken to be one.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the total number of locations.

tau scalar precision of the Gaussian CAR prior.

c integer number of constraints to impose on the improper density function. If
omitted, c is calculated as the number of disjoint groups of spatial locations in
the adjacency structure, which implicitly assumes a first-order CAR process for
each group. Note that c should be equal to the number of eigenvalues of the
precision matrix that are zero. For example, if the neighborhood structure is
based on a second-order Markov random field in one dimension then the matrix
has two zero eigenvalues and in two dimensions it has three zero eigenvalues.
See Rue and Held (2005) and the NIMBLE User Manual for more information.

zero_mean integer specifying whether to set the mean of all locations to zero during MCMC
sampling of a node specified with this distribution in BUGS code (default 0).
This argument is used only in BUGS model code when specifying models in
NIMBLE. If 0, the overall process mean is included implicitly in the value of
each location in a BUGS model; if 1, then during MCMC sampling, the mean of
all locations is set to zero at each MCMC iteration, and a separate intercept term

https://r-nimble.org/html_manual/cha-welcome-nimble.html

40 CAR-Normal

should be included in the BUGS model. Note that centering during MCMC as
implemented in NIMBLE follows the ad hoc approach of WinBUGS and does
not sample under the constraint that the mean is zero as discussed on p. 36 of
Rue and Held (2005). See ‘Details’.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

When specifying a CAR distribution in BUGS model code, the zero_mean parameter should be
specified as either 0 or 1 (rather than TRUE or FALSE).

Note that because the distribution is improper, rcar_normal does not generate a sample from the
distribution. However, as discussed in Rue and Held (2005), it is possible to generate a sample from
the distribution under constraints imposed based on the eigenvalues of the precision matrix that are
zero.

Value

dcar_normal gives the density, while rcar_normal returns the current process values, since this
distribution is improper.

Author(s)

Daniel Turek

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields, Chapman and Hall/CRC.

See Also

CAR-Proper, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)
num <- c(1, 2, 2, 1)
adj <- c(2, 1,3, 2,4, 3)
weights <- c(1, 1, 1, 1, 1, 1)
lp <- dcar_normal(x, adj, weights, num, tau = 1)

CAR-Proper 41

CAR-Proper The CAR-Proper Distribution

Description

Density function and random generation for the proper Gaussian conditional autoregressive (CAR)
distribution.

Usage

dcar_proper(
x,
mu,
C = CAR_calcC(adj, num),
adj,
num,
M = CAR_calcM(num),
tau,
gamma,
evs = CAR_calcEVs3(C, adj, num),
log = FALSE

)

rcar_proper(
n = 1,
mu,
C = CAR_calcC(adj, num),
adj,
num,
M = CAR_calcM(num),
tau,
gamma,
evs = CAR_calcEVs3(C, adj, num)

)

Arguments

x vector of values.

mu vector of the same length as x, specifying the mean for each spatial location.

C vector of the same length as adj, giving the weights associated with each pair
of neighboring locations. See ‘Details’.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

42 CAR-Proper

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations. See ‘Details’.

tau scalar precision of the Gaussian CAR prior.

gamma scalar representing the overall degree of spatial dependence. See ‘Details’.

evs vector of eigenvalues of the adjacency matrix implied by C, adj, and num. This
parameter should not be provided; it will always be calculated using the adja-
cency information.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

If both C and M are omitted, then all weights are taken as one, and corresponding values of C and M
are generated.

The C and M parameters must jointly satisfy a symmetry constraint: that M^(-1) %*% C is symmetric,
where M is a diagonal matrix and C is the full weight matrix that is sparsely represented by the
parameter vector C.

For a proper CAR model, the value of gamma must lie within the inverse minimum and maximum
eigenvalues of M^(-0.5) %*% C %*% M^(0.5), where M is a diagonal matrix and C is the full weight
matrix. These bounds can be calculated using the deterministic functions carMinBound(C, adj,
num, M) and carMaxBound(C, adj, num, M), or simultaneously using carBounds(C, adj, num,
M). In the case where C and M are omitted (all weights equal to one), the bounds on gamma are
necessarily (-1, 1).

Value

dcar_proper gives the density, and rcar_proper generates random deviates.

Author(s)

Daniel Turek

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

See Also

CAR-Normal, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)
mu <- rep(3, 4)
adj <- c(2, 1,3, 2,4, 3)
num <- c(1, 2, 2, 1)

carBounds 43

omitting C and M uses all weights = 1
dcar_proper(x, mu, adj = adj, num = num, tau = 1, gamma = 0.95)

equivalent to above: specifying all weights = 1,
then using as.carCM to generate C and M arguments
weights <- rep(1, 6)
CM <- as.carCM(adj, weights, num)
C <- CM$C
M <- CM$M
dcar_proper(x, mu, C, adj, num, M, tau = 1, gamma = 0.95)

now using non-unit weights
weights <- c(2, 2, 3, 3, 4, 4)
CM2 <- as.carCM(adj, weights, num)
C2 <- CM2$C
M2 <- CM2$M
dcar_proper(x, mu, C2, adj, num, M2, tau = 1, gamma = 0.95)

carBounds Calculate bounds for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower and upper bounds for the gamma parameter of the dcar_proper distribution

Usage

carBounds(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (−0.5)CM (0.5).
The lower and upper bounds are returned in a numeric vector.

44 carMaxBound

Value

A numeric vector containing the bounds (minimum and maximum allowable values) for the gamma
parameter of the dcar_proper distribution.

Author(s)

Daniel Turek

See Also

CAR-Proper, carMinBound, carMaxBound

carMaxBound Calculate the upper bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the upper bound for the gamma parameter of the dcar_proper distribution

Usage

carMaxBound(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of M (−0.5)CM (0.5).

Value

The upper bound (maximum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

Author(s)

Daniel Turek

carMinBound 45

See Also

CAR-Proper, carMinBound, carBounds

carMinBound Calculate the lower bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower bound for the gamma parameter of the dcar_proper distribution

Usage

carMinBound(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (−0.5)CM (0.5).

Value

The lower bound (minimum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

Author(s)

Daniel Turek

See Also

CAR-Proper, carMaxBound, carBounds

46 Categorical

CAR_calcNumIslands Calculate number of islands based on a CAR adjacency matrix.

Description

Calculate number of islands (distinct connected groups) based on a CAR adjacency matrix.

Usage

CAR_calcNumIslands(adj, num)

Arguments

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.

Author(s)

Daniel Turek

See Also

CAR-Normal

Categorical The Categorical Distribution

Description

Density and random generation for the categorical distribution

Usage

dcat(x, prob, log = FALSE)

rcat(n = 1, prob)

Arguments

x non-negative integer-value numeric value.

prob vector of probabilities, internally normalized to sum to one.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

checkInterrupt 47

Details

See the BUGS manual for mathematical details.

Value

dcat gives the density and rcat generates random deviates.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

probs <- c(1/4, 1/10, 1 - 1/4 - 1/10)
x <- rcat(n = 30, probs)
dcat(x, probs)

checkInterrupt Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution.
Part of the NIMBLE language.

Description

Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution. Part of the NIMBLE language.

Usage

checkInterrupt()

Details

During execution of nimbleFunctions that take a long time, it is nice to occassionally check if
the user has entered an interrupt and bail out of execution if so. This function does that. Dur-
ing uncompiled nimbleFunction execution, it does nothing. During compiled execution, it calls
R_checkUserInterrupt() of the R headers.

Author(s)

Perry de Valpine

48 ChineseRestaurantProcess

ChineseRestaurantProcess

The Chinese Restaurant Process Distribution

Description

Density and random generation for the Chinese Restaurant Process distribution.

Usage

dCRP(x, conc = 1, size, log = 0)

rCRP(n, conc = 1, size)

Arguments

x vector of values.

conc scalar concentration parameter.

size integer-valued length of x (required).

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n = 1 is handled currently).

Details

The Chinese restaurant process distribution is a distribution on the space of partitions of the positive
integers. The distribution with concentration parameter α equal to conc has probability function

f(xi | x1, . . . , xi−1) =
1

i− 1 + α

i−1∑
j=1

δxj +
α

i− 1 + α
δxnew ,

where xnew is a new integer not in x1, . . . , xi−1.

If conc is not specified, it assumes the default value of 1. The conc parameter has to be larger than
zero. Otherwise, NaN are returned.

Value

dCRP gives the density, and rCRP gives random generation.

Author(s)

Claudia Wehrhahn

clearCompiled 49

References

Blackwell, D., and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. The
Annals of Statistics, 1: 353-355.

Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités de Saint-
Flour XIII - 1983 (pp. 1-198). Springer, Berlin, Heidelberg.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. IMS Lecture
Notes-Monograph Series, 30: 245-267.

Examples

x <- rCRP(n=1, conc = 1, size=10)
dCRP(x, conc = 1, size=10)

clearCompiled Clear compiled objects from a project and unload shared library

Description

Clear all compiled objects from a project and unload the shared library produced by the C++ com-
piler. Has no effect on Windows.

Usage

clearCompiled(obj)

Arguments

obj A compiled nimbleFunction or nimble model

Details

This will clear all compiled objects associated with your NIMBLE project. For example, if cModel
is a compiled model, clearCompiled(cModel) will clear both the model and all associated nim-
bleFunctions such as compiled MCMCs that use that model.

Use of this function can be dangerous. There is some risk that if you have copies of the R objects
that interfaced to compiled C++ objects that have been removed, and you attempt to use those R
objects after clearing their compiled counterparts, you will crash R. We have tried to minimize that
risk, but we can’t guarantee safe behavior.

CmodelBaseClass-class Class CmodelBaseClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

50 compileNimble

CnimbleFunctionBase-class

Class CnimbleFunctionBase

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

codeBlockClass-class Class codeBlockClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

compileNimble compile NIMBLE models and nimbleFunctions

Description

compile a collection of models and nimbleFunctions: generate C++, compile the C++, load the
result, and return an interface object

Usage

compileNimble(
...,
project,
dirName = NULL,
projectName = "",
control = list(),
resetFunctions = FALSE,
showCompilerOutput = getNimbleOption("showCompilerOutput")

)

Arguments

... An arbitrary set of NIMBLE models and nimbleFunctions, or lists of them. If
given as named parameters, those names may be used in the return list.

project Optional NIMBLE model or nimbleFunction already associated with a project,
which the current units for compilation should join. If not provided, a new
project will be created and the current compilation units will be associated with
it.

compileNimble 51

dirName Optional directory name in which to generate the C++ code. If not provided, a
temporary directory will be generated using R’s tempdir function.

projectName Optional character name for labeling the project if it is new

control A list mostly for internal use. See details.

resetFunctions Logical value stating whether nimbleFunctions associated with an existing project
should all be reset for compilation purposes. See details.

showCompilerOutput

Logical value indicating whether details of C++ compilation should be printed.

Details

This is the main function for calling the NIMBLE compiler. A set of compiler calls and output will
be seen. Compiling in NIMBLE does 4 things: 1. It generates C++ code files for all the model
and nimbleFunction components. 2. It calls the system’s C++ compiler. 3. It loads the compiled
object(s) into R using dyn.load. And 4. it generates R objects for using the compiled model and
nimbleFunctions.

When the units for compilation provided in ... include multiple models and/or nimbleFunctions,
models are compiled first, in the order in which they are provided. Groups of nimbleFunctions that
were specialized from the same nimbleFunction generator (the result of a call to nimbleFunction,
which then takes setup arguments and returns a specialized nimbleFunction) are then compiled as a
group, in the order of first appearance.

The behavior of adding new compilation units to an existing project is limited. For example, one
can compile a model in one call to compileNimble and then compile a nimbleFunction that uses
the model (i.e. was given the model as a setup argument) in a second call to compileNimble, with
the model provided as the project argument. Either the uncompiled or compiled model can be
provided. However, compiling a second nimbleFunction and adding it to the same project will only
work in limited circumstances. Basically, the limitations occur because it attempts to re-use already
compiled pieces, but if these do not have all the necessary information for the new compilation,
it gives up. An attempt has been made to give up in a controlled manner and provide somewhat
informative messages.

When compilation is not allowed or doesn’t work, try using resetFunctions = TRUE, which will
force recompilation of all nimbleFunctions in the new call. Previously compiled nimbleFunctions
will be unaffected, and their R interface objects should continue to work. The only cost is additional
compilation time for the current compilation call. If that doesn’t work, try re-creating the model
and/or the nimbleFunctions from their generators. An alternative possible fix is to compile multiple
units in one call, rather than sequentially in multiple calls.

The control list can contain the following named elements, each with TRUE or FALSE: debug, which
sets a debug mode for the compiler for development purposes; debugCpp, which inserts an out-
put message before every line of C++ code for debugging purposes; compileR, which determines
whether the R-only steps of compilation should be executed; writeCpp, which determines whether
the C++ files should be generated; compileCpp, which determines whether the C++ should be com-
piled; loadSO, which determines whether the DLL or shared object should be loaded and interfaced;
and returnAsList, which determines whether calls to the compiled nimbleFunction should return
only the returned value of the call (returnAsList = FALSE) or whether a list including the input
arguments, possibly modified, should be returned in a list with the returned value of the call at the
end (returnAsList = TRUE). The control list is mostly for developer use, although returnAsArgs

52 configureMCMC

may be useful to a user. An example of developer use is that one can have the compiler write the
C++ files but not compile them, then modify them by hand, then have the C++ compiler do the
subsequent steps without over-writing the files.
See the NIMBLE User Manual Manual for examples

Value

If there is only one compilation unit (one model or nimbleFunction), an R interface object is re-
turned. This object can be used like the uncompiled model or nimbleFunction, but execution will
call the corresponding compiled objects or functions. If there are multiple compilation units, they
will be returned as a list of interface objects, in the order provided. If names were included in the ar-
guments, or in a list if any elements of ... are lists, those names will be used for the corresponding
element of the returned list. Otherwise an attempt will be made to generate names from the argu-
ment code. For example compileNimble(A = fun1, B = fun2, project = myModel) will return a
list with named elements A and B, while compileNimble(fun1, fun2, project = myModel) will
return a list with named elements fun1 and fun2.

Author(s)

Perry de Valpine

configureMCMC Build the MCMCconf object for construction of an MCMC object

Description

Creates a default MCMC configuration for a given model.

Usage

configureMCMC(
model,
nodes,
control = list(),
monitors,
thin = 1,
monitors2 = character(),
thin2 = 1,
useConjugacy = getNimbleOption("MCMCuseConjugacy"),
onlyRW = FALSE,
onlySlice = FALSE,
multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"),
enableWAIC = getNimbleOption("MCMCenableWAIC"),
controlWAIC = list(),
print = getNimbleOption("verbose"),
autoBlock = FALSE,
oldConf,
...

)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

configureMCMC 53

Arguments

model A NIMBLE model object, created from nimbleModel

nodes An optional character vector, specifying the nodes and/or variables for which
samplers should be created. Nodes may be specified in their indexed form, y[1,
3]. Alternatively, nodes specified without indexing will be expanded fully, e.g.,
x will be expanded to x[1], x[2], etc. If missing, the default value is all non-
data stochastic nodes. If NULL, then no samplers are added.

control An optional list of control arguments to sampler functions. If a control list
is provided, the elements will be provided to all sampler functions which uti-
lize the named elements given. For example, the standard Metropolis-Hastings
random walk sampler (sampler_RW) utilizes control list elements adaptive,
adaptInterval, and scale. (Internally it also uses targetNode, but this should
not generally be provided as a control list element). The default values for con-
trol list arguments for samplers (if not otherwise provided as an argument to
configureMCMC()) are in the setup code of the sampling algorithms.

monitors A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval thin,
and the samples will be stored into the mvSamples object. The default value is
all top-level stochastic nodes of the model – those having no stochastic parent
nodes.

thin The thinning interval for monitors. Default value is one.

monitors2 A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval thin2,
and the samples will be stored into the mvSamples2 object. The default value is
an empty character vector, i.e. no values will be recorded.

thin2 The thinning interval for monitors2. Default value is one.

useConjugacy A logical argument, with default value TRUE. If specified as FALSE, then no
conjugate samplers will be used, even when a node is determined to be in a
conjugate relationship.

onlyRW A logical argument, with default value FALSE. If specified as TRUE, then
Metropolis-Hastings random walk samplers (sampler_RW) will be assigned for
all non-terminal continuous-valued nodes nodes. Discrete-valued nodes are as-
signed a slice sampler (sampler_slice), and terminal nodes are assigned a poste-
rior_predictive sampler (sampler_posterior_predictive).

onlySlice A logical argument, with default value FALSE. If specified as TRUE, then a
slice sampler is assigned for all non-terminal nodes. Terminal nodes are still
assigned a posterior_predictive sampler.

multivariateNodesAsScalars

A logical argument, with default value FALSE. If specified as TRUE, then non-
terminal multivariate stochastic nodes will have scalar samplers assigned to each
of the scalar components of the multivariate node. The default value of FALSE
results in a single block sampler assigned to the entire multivariate node. Note,
multivariate nodes appearing in conjugate relationships will be assigned the cor-
responding conjugate sampler (provided useConjugacy == TRUE), regardless of
the value of this argument.

54 configureRJ

enableWAIC A logical argument, specifying whether to enable WAIC calculations for the re-
sulting MCMC algorithm. Defaults to the value of nimbleOptions('MCMCenableWAIC'),
which in turn defaults to FALSE. Setting nimbleOptions('enableWAIC' = TRUE)
will ensure that WAIC is enabled for all calls to configureMCMC and buildMCMC.

controlWAIC A named list of inputs that control the behavior of the WAIC calculation. See
help(waic).

print A logical argument, specifying whether to print the ordered list of default sam-
plers.

autoBlock A logical argument specifying whether to use an automated blocking procedure
to determine blocks of model nodes for joint sampling. If TRUE, an MCMC
configuration object will be created and returned corresponding to the results of
the automated parameter blocking. Default value is FALSE.

oldConf An optional MCMCconf object to modify rather than creating a new MCMC-
conf from scratch

... Additional named control list elements for default samplers, or additional argu-
ments to be passed to the autoBlock function when autoBlock = TRUE

Details

See MCMCconf for details on how to manipulate the MCMCconf object

Author(s)

Daniel Turek

See Also

buildMCMC runMCMC nimbleMCMC

configureRJ Configure Reversible Jump for Variable Selection

Description

Modifies an MCMC configuration object to perform a reversible jump MCMC sampling for variable
selection, using a univariate normal proposal distribution. Users can control the mean and scale of
the proposal. This function supports two different types of model specification: with and without
indicator variables.

Usage

configureRJ(
conf,
targetNodes,
indicatorNodes = NULL,
priorProb = NULL,
control = list(mean = NULL, scale = NULL, fixedValue = NULL)

)

configureRJ 55

Arguments

conf An MCMCconf object.

targetNodes A character vector, specifying the nodes and/or variables for which variable se-
lection is to be performed. Nodes may be specified in their indexed form, 'y[1,
3]'. Alternatively, nodes specified without indexing will be expanded, e.g., 'x'
will be expanded to 'x[1]', 'x[2]', etc.

indicatorNodes An optional character vector, specifying the indicator nodes and/or variables
paired with targetNodes. Nodes may be specified in their indexed form, 'y[1,
3]'. Alternatively, nodes specified without indexing will be expanded, e.g., 'x'
will be expanded to 'x[1]', 'x[2]', etc. Nodes must be provided consistently
with targetNodes. See details.

priorProb An optional value or vector of prior probabilities for each node to be in the
model. See details.

control An optional list of control arguments:

• mean. The mean of the normal proposal distribution (default = 0).
• scale. The standard deviation of the normal proposal distribution (default =

1).
• fixedValue. Value for the variable when it is out of the model, which can

be used only when priorProb is provided (default = 0). If specified when
indicatorNodes is passed, a warning is given and fixedValue is ignored.

Details

This function modifies the samplers in MCMC configuration object for each of the nodes provided
in the targetNodes argument. To these elements two samplers are assigned: a reversible jump
sampler to transition the variable in/out of the model, and a modified version of the original sampler,
which performs updates only when the target node is already in the model.

configureRJ can handle two different ways of writing a NIMBLE model, either with or without
indicator variables. When using indicator variables, the indicatorNodes argument must be pro-
vided. Without indicator variables, the priorProb argument must be provided. In the latter case,
the user can provide a non-zero value for fixedValue if desired.

Note that this functionality is intended for variable selection in regression-style models but may be
useful for other situations as well. At the moment, setting a variance component to zero and thereby
removing a set of random effects that are explicitly part of a model will not work because MCMC
sampling in that case would need to propose values for multiple parameters (the random effects),
whereas the current functionality only proposes adding/removing a single model node.

Value

NULL configureRJ modifies the input MCMC configuration object in place.

Author(s)

Sally Paganin, Perry de Valpine, Daniel Turek

56 configureRJ

References

Peter J. Green. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4), 711-732.

See Also

samplers configureMCMC

Examples

Not run:

Linear regression with intercept and two covariates, using indicator variables

code <- nimbleCode({
beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
z1 ~ dbern(psi) ## indicator variable associated with beta1
z2 ~ dbern(psi) ## indicator variable associated with beta2
psi ~ dunif(0, 1) ## hyperprior on inclusion probability
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * z1 * x1[i] + beta2 * z2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

simulate some data
set.seed(1)
N <- 100
x1 <- runif(N, -1, 1)
x2 <- runif(N, -1, 1) ## this covariate is not included
Y <- rnorm(N, 1 + 2.5 * x1, sd = 1)

build the model
rIndicatorModel <- nimbleModel(code, constants = list(N = N),

data = list(Y = Y, x1 = x1, x2 = x2),
inits = list(beta0 = 0, beta1 = 0, beta2 = 0, sigma = sd(Y),

z1 = 1, z2 = 1, psi = 0.5))

indicatorModelConf <- configureMCMC(rIndicatorModel)

Add reversible jump
configureRJ(conf = indicatorModelConf, ## model configuration

targetNodes = c("beta1", "beta2"), ## coefficients for selection
indicatorNodes = c("z1", "z2"), ## indicators paired with coefficients
control = list(mean = 0, scale = 2))

indicatorModelConf$addMonitors("beta1", "beta2", "z1", "z2")

rIndicatorMCMC <- buildMCMC(indicatorModelConf)

configureRJ 57

cIndicatorModel <- compileNimble(rIndicatorModel)
cIndicatorMCMC <- compileNimble(rIndicatorMCMC, project = rIndicatorModel)

set.seed(1)
samples <- runMCMC(cIndicatorMCMC, 10000, nburnin = 6000)

posterior probability to be included in the mode
mean(samples[, "z1"])
mean(samples[, "z2"])

posterior means when in the model
mean(samples[, "beta1"][samples[, "z1"] != 0])
mean(samples[, "beta2"][samples[, "z2"] != 0])

Linear regression with intercept and two covariates, without indicator variables

code <- nimbleCode({
beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

rNoIndicatorModel <- nimbleModel(code, constants = list(N = N),
data = list(Y = Y, x1 = x1, x2 = x2),

inits= list(beta0 = 0, beta1 = 0, beta2 = 0, sigma = sd(Y)))

noIndicatorModelConf <- configureMCMC(rNoIndicatorModel)

Add reversible jump
configureRJ(conf = noIndicatorModelConf, ## model configuration

targetNodes = c("beta1", "beta2"), ## coefficients for selection
priorProb = 0.5, ## prior probability of inclusion
control = list(mean = 0, scale = 2))

add monitors
noIndicatorModelConf$addMonitors("beta1", "beta2")
rNoIndicatorMCMC <- buildMCMC(noIndicatorModelConf)

cNoIndicatorModel <- compileNimble(rNoIndicatorModel)
cNoIndicatorMCMC <- compileNimble(rNoIndicatorMCMC, project = rNoIndicatorModel)

set.seed(1)
samples <- runMCMC(cNoIndicatorMCMC, 10000, nburnin = 6000)

posterior probability to be included in the mode
mean(samples[, "beta1"] != 0)
mean(samples[, "beta2"] != 0)

58 Constraint

posterior means when in the model
mean(samples[, "beta1"][samples[, "beta1"] != 0])
mean(samples[, "beta2"][samples[, "beta2"] != 0])

End(Not run)

Constraint Constraint calculations in NIMBLE

Description

Calculations to handle censoring

Usage

dconstraint(x, cond, log = FALSE)

rconstraint(n = 1, cond)

Arguments

x value indicating whether cond is TRUE or FALSE

cond logical value

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

Used for working with constraints in BUGS code. See the NIMBLE manual for additional details.

Value

dconstraint gives the density and rconstraint generates random deviates, but these are unusual
as the density is 1 if x matches cond and 0 otherwise and the deviates are simply the value of cond

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

decide 59

Examples

constr <- 3 > 2 && 4 > 0
x <- rconstraint(1, constr)
dconstraint(x, constr)
dconstraint(0, 3 > 4)
dconstraint(1, 3 > 4)
rconstraint(1, 3 > 4)

decide Makes the Metropolis-Hastings acceptance decision, based upon the
input (log) Metropolis-Hastings ratio

Description

This function returns a logical TRUE/FALSE value, indicating whether the proposed transition
should be accepted (TRUE) or rejected (FALSE).

Usage

decide(logMetropolisRatio)

Arguments

logMetropolisRatio

The log of the Metropolis-Hastings ratio, which is calculated from model prob-
abilities and forward/reverse transition probabilities. Calculated as the ratio of
the model probability under the proposal to that under the current values mul-
tiplied by the ratio of the reverse transition probability to the forward transition
probability.

Details

The Metropolis-Hastings accept/reject decisions is made as follows. If logMetropolisRatio is
greater than 0, accept (return TRUE). Otherwise draw a uniform random number between 0 and 1
and accept if it is less that exp(logMetropolisRatio. The proposed transition will be rejected
(return FALSE). If logMetropolisRatio is NA, NaN, or -Inf, a reject (FALSE) decision will be
returned.

Author(s)

Daniel Turek

60 decideAndJump

decideAndJump Creates a nimbleFunction for executing the Metropolis-Hastings
jumping decision, and updating values in the model, or in a carbon
copy modelValues object, accordingly.

Description

This nimbleFunction generator must be specialized to three required arguments: a model, a model-
Values, and a character vector of node names.

Usage

decideAndJump(model, mvSaved, target, UNUSED)

Arguments

model An uncompiled or compiled NIMBLE model object.

mvSaved A modelValues object containing identical variables and logProb variables as
the model. Can be created by modelValues(model).

target A character vector providing the target node.

UNUSED Unused placeholder argument.

Details

Calling decideAndJump(model, mvSaved, target) will generate a specialized nimbleFunction with
four required numeric arguments:

modelLP1: The model log-probability associated with the newly proposed value(s)

modelLP0: The model log-probability associated with the original value(s)

propLP1: The log-probability associated with the proposal forward-transition

propLP0: The log-probability associated with the proposal reverse-tranisiton

Executing this function has the following effects: – Calculate the (log) Metropolis-Hastings ratio,
as logMHR = modelLP1 - modelLP0 - propLP1 + propLP0 – Make the proposal acceptance deci-
sion based upon the (log) Metropolis-Hastings ratio – If the proposal is accepted, the values and
associated logProbs of all calcNodes are copied from the model object into the mvSaved object –
If the proposal is rejected, the values and associated logProbs of all calcNodes are copied from the
mvSaved object into the model object – Return a logical value, indicating whether the proposal was
accepted

Author(s)

Daniel Turek

declare 61

declare Explicitly declare a variable in run-time code of a nimbleFunction

Description

Explicitly declare a variable in run-time code of a nimbleFunction, for cases when its dimensions
cannot be inferred before it is used. Works in R and NIMBLE.

Usage

declare(name, def)

Arguments

name Name of a variable to declare, without quotes

def NIMBLE type declaration, of the form TYPE(nDim, sizes), where TYPE is
integer, double, or logical, nDim is the number of dimensions, and sizes
is an optional vector of sizes concatenated with c. If nDim is omitted, it defaults
to 0, indicating a scalar. If sizes are provided, they should not be changed sub-
sequently in the function, including by assignment. Omitting nDim results in a
scalar. For logical, only scalar is currently supported.

Details

In a run-time function of a nimbleFunction (either the run function or a function provided in
methods when calling nimbleFunction), the dimensionality and numeric type of a variable is
inferred when possible from the statement first assigning into it. E.g. A <- B + C infers that A has
numeric types, dimensions and sizes taken from B + C. However, if the first appearance of A is e.g.
A[i] <- 5, A must have been explicitly declared. In this case, declare(A, double(1)) would make
A a 1-dimensional (i.e. vector) double.

When sizes are not set, they can be set by a call to setSize or by assignment to the whole object.
Sizes are not automatically extended if assignment is made to elements beyond the current sizes. In
compiled nimbleFunctions doing so can cause a segfault and crash the R session.

This part of the NIMBLE language is needed for compilation, but it also runs in R. When run in R,
is works by the side effect of creating or modifying name in the calling environment.

Author(s)

NIMBLE development team

Examples

declare(A, logical()) ## scalar logical, the only kind allowed
declare(B, integer(2, c(10, 10))) ## 10 x 10 integer matrix
declare(C, double(3)) ## 3-dimensional double array with no sizes set.

62 Dirichlet

deregisterDistributions

Remove user-supplied distributions from use in NIMBLE BUGS mod-
els

Description

Deregister distributional information originally supplied by the user for use in BUGS model code

Usage

deregisterDistributions(
distributionsNames,
userEnv = parent.frame(),
warn = TRUE

)

Arguments

distributionsNames

a character vector giving the names of the distributions to be deregistered.

userEnv environment in which to look for the nimbleFunctions that provide the distribu-
tion; this will generally not need to be set by the user as it will default to the
environment from which this function was called.

warn logical indicating whether to warn if trying to deregister a distribution that is not
registered (default = TRUE).

Author(s)

Christopher Paciorek

Dirichlet The Dirichlet Distribution

Description

Density and random generation for the Dirichlet distribution

Usage

ddirch(x, alpha, log = FALSE)

rdirch(n = 1, alpha)

distributionInfo 63

Arguments

x vector of values.

alpha vector of parameters of same length as x

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

ddirch gives the density and rdirch generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

alpha <- c(1, 10, 30)
x <- rdirch(1, alpha)
ddirch(x, alpha)

distributionInfo Get information about a distribution

Description

Give information about each BUGS distribution

64 distributionInfo

Usage

getDistributionInfo(dist)

isUserDefined(dist)

pqDefined(dist)

getType(
dist,
params = NULL,
valueOnly = is.null(params) && !includeParams,
includeParams = !is.null(params)

)

getParamNames(dist, includeValue = TRUE)

Arguments

dist a character vector of length one, giving the name of the distribution (as used in
BUGS code), e.g. 'dnorm'

params an optional character vector of names of parameters for which dimensions are
desired (possibly including \’value\’ and alternate parameters)

valueOnly a logical indicating whether to only return the dimension of the value of the node

includeParams a logical indicating whether to return dimensions of parameters. If TRUE and
\’params\’ is NULL then dimensions of all parameters, including the dimension
of the value of the node, are returned

includeValue a logical indicating whether to return the string ’value’, which is the name of the
node value

Details

NIMBLE provides various functions to give information about a BUGS distribution. In some cases,
functions of the same name and similar functionality operate on the node(s) of a model as well (see
help(modelBaseClass)).

getDistributionInfo returns an internal data structure (a reference class object) providing vari-
ous information about the distribution. The output is not very user-friendly, but does contain all of
the information that NIMBLE has about the distribution.

isDiscrete tests if a BUGS distribution is a discrete distribution.

isUserDefined tests if a BUGS distribution is a user-defined distribution.

pqAvail tests if a BUGS distribution provides distribution (’p’) and quantile (’q’) functions.

getDimension provides the dimension of the value and/or parameters of a BUGS distribution. The
return value is a numeric vector with an element for each parameter/value requested.

getType provides the type (numeric, logical, integer) of the value and/or parameters of a BUGS
distribution. The return value is a character vector with an element for each parameter/value re-
quested. At present, all quantities are stored as numeric (double) values, so this function is of little
practical use but could be exploited in the future.

Double-Exponential 65

getParamNames provides the value and/or parameter names of a BUGS distribution.

Author(s)

Christopher Paciorek

Examples

distInfo <- getDistributionInfo('dnorm')
distInfo
distInfo$range

isDiscrete('dbin')

isUserDefined('dbin')

pqDefined('dgamma')
pqDefined('dmnorm')

getDimension('dnorm')
getDimension('dnorm', includeParams = TRUE)
getDimension('dnorm', c('var', 'sd'))
getDimension('dcat', includeParams = TRUE)
getDimension('dwish', includeParams = TRUE)

getType('dnorm')
getType('dnorm', includeParams = TRUE)
getType('dnorm', c('var', 'sd'))
getType('dcat', includeParams = TRUE)
getType('dwish', includeParams = TRUE)

getParamNames('dnorm', includeValue = FALSE)
getParamNames('dmnorm')

Double-Exponential The Double Exponential (Laplace) Distribution

Description

Density, distribution function, quantile function and random generation for the double exponential
distribution, allowing non-zero location, mu, and non-unit scale, sigma, or non-unit rate, tau

Usage

ddexp(x, location = 0, scale = 1, rate = 1/scale, log = FALSE)

rdexp(n, location = 0, scale = 1, rate = 1/scale)

66 Double-Exponential

pdexp(
q,
location = 0,
scale = 1,
rate = 1/scale,
lower.tail = TRUE,
log.p = FALSE

)

qdexp(
p,
location = 0,
scale = 1,
rate = 1/scale,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

x vector of values.
location vector of location values.
scale vector of scale values.
rate vector of inverse scale values.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.
q vector of quantiles.
lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].
log.p logical; if TRUE, probabilities p are given by user as log(p).
p vector of probabilities.

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

ddexp gives the density, pdexp gives the distribution function, qdexp gives the quantile function,
and rdexp generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

eigenNimbleList 67

See Also

Distributions for other standard distributions

Examples

x <- rdexp(50, location = 2, scale = 1)
ddexp(x, 2, 1)

eigenNimbleList eigenNimbleList definition

Description

nimbleList definition for the type of nimbleList returned by nimEigen.

Usage

eigenNimbleList

Format

An object of class list of length 1.

Author(s)

NIMBLE development team

See Also

nimEigen

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with rate (i.e., mean of 1/rate) or scale parameterizations.

Usage

dexp_nimble(x, rate = 1/scale, scale = 1, log = FALSE)

rexp_nimble(n = 1, rate = 1/scale, scale = 1)

pexp_nimble(q, rate = 1/scale, scale = 1, lower.tail = TRUE, log.p = FALSE)

qexp_nimble(p, rate = 1/scale, scale = 1, lower.tail = TRUE, log.p = FALSE)

68 Exponential

Arguments

x vector of values.

rate vector of rate values.

scale vector of scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

NIMBLE’s exponential distribution functions use Rmath’s functions under the hood, but are param-
eterized to take both rate and scale and to use ’rate’ as the core parameterization in C, unlike Rmath,
which uses ’scale’. See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dexp_nimble gives the density, pexp_nimble gives the distribution function, qexp_nimble gives
the quantile function, and rexp_nimble generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rexp_nimble(50, scale = 3)
dexp_nimble(x, scale = 3)

extractControlElement 69

extractControlElement Extract named elements from MCMC sampler control list

Description

Extract named elements from MCMC sampler control list

Usage

extractControlElement(controlList, elementName, defaultValue, error)

Arguments

controlList control list object, which is passed as an argument to all MCMC sampler setup
functions.

elementName character string, giving the name of the element to be extracted from the control
list.

defaultValue default value of the control list element, giving the value to be used when the
elementName does not exactly match the name of an element in the controlList.

error character string, giving the error message to be printed if no defaultValue
is provided and elementName does not match the name of an element in the
controlList.

Value

The element of controlList whose name matches elementName. If no controlList name matches
elementName, then defaultValue is returned.

Author(s)

Daniel Turek

flat The Improper Uniform Distribution

Description

Improper flat distribution for use as a prior distribution in BUGS models

70 getBound

Usage

dflat(x, log = FALSE)

rflat(n = 1)

dhalfflat(x, log = FALSE)

rhalfflat(n = 1)

Arguments

x vector of values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Value

dflat gives the pseudo-density value of 1, while rflat and rhalfflat return NaN, since one cannot
simulate from an improper distribution. Similarly, dhalfflat gives a pseudo-density value of 1
when x is non-negative.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

dflat(1)

getBound Get value of bound of a stochastic node in a model

Description

Get the value of the lower or upper bound for a single stochastic node in a model.

Usage

getBound(model, node, bound, nodeFunctionIndex)

getBUGSexampleDir 71

Arguments

model A NIMBLE model object

node The name of a stochastic node in the model

bound Either 'lower' or 'upper' indicating the desired bound for the node
nodeFunctionIndex

For internal NIMBLE use only

Details

Standard usage is as a method of a model, in the form model$getBound(node, bound), but the
usage as a simple function with the model as the first argument as above is also allowed.

For nodes that do not involve truncation of the distribution this will return the lower or upper bound
of the distribution, which may be a constant or for a limited number of distributions a parameter or
functional of a parameter (at the moment in NIMBLE, the only case where a bound is a parameter is
for the uniform distribution. For nodes that are truncated, this will return the desired bound, which
may be a functional of other quantities in the model or may be a constant.

getBUGSexampleDir Get the directory path to one of the classic BUGS examples installed
with NIMBLE package

Description

NIMBLE comes with some of the classic BUGS examples. getBUGSexampleDir looks up the
location of an example from its name.

Usage

getBUGSexampleDir(example)

Arguments

example The name of the classic BUGS example.

Value

Character string of the fully pathed directory of the BUGS example.

Author(s)

Christopher Paciorek

See Also

readBUGSmodel for usage in creating a model from a classic BUGS example

72 getConditionallyIndependentSets

getConditionallyIndependentSets

Get a list of conditionally independent sets of nodes in a nimble model

Description

A conditionally independent set of nodes is such that the joint probability (density) of nodes in the
set will not change even if any non-given node outside the set is changed. Default given nodes are
data nodes and parameter nodes (aka "top-level" nodes, i.e. nodes with no parent nodes), but this
can be controlled.

Usage

getConditionallyIndependentSets(
model,
nodes,
givenNodes,
omit = integer(),
explore = c("both", "down", "up"),
unknownAsGiven = TRUE,
returnType = "names",
returnScalarComponents = FALSE,
endAsGiven = FALSE

)

Arguments

model A nimble model object (uncompiled or compiled), such as returned by nimbleModel.

nodes A vector of stochastic node names (or their graph IDs) to split into conditionally
independent sets, conditioned on the givenNodes. If unknownAsGiven=FALSE,
the nodes are the starting nodes from which conditionally independent sets of
nodes should be found, possibly including additional nodes not included in the
nodes argument. If nodes is omitted, the default will be all latent nodes (defined
as stochastic nodes that are not data and have at least one stochastic parent node,
possibly with determinstic nodes in-between) that are a parent of a givenNode
(either provided or default). Note that this will omit latent states that have no
hyperparameters. An example is the first latent state in some state-space (time-
series) models, which is sometimes declared with known prior.

givenNodes A vector of node names or their graph IDs that should be considered as fixed
(given) and hence can be conditioned on. If omitted, the default will be all data
nodes and all parameter nodes, the latter defined as nodes with no stochastic
parent nodes (skipping over deterministic parent nodes). See endAsGiven for a
variant on defaults.

omit A vector of node names or their graph IDs that should be omitted and should
block further graph exploration.

getDefinition 73

explore The method of graph exploration, which may corresond to what the nodes ar-
gument represents. For "down", graph exploration starts only down (towards
descendants) from nodes. For "up", graph exploration starts only up (towards
ancestors) from nodes. For "both" (the default and normal setting), both direc-
tions are explored.

unknownAsGiven Logical for whether a model node not in nodes or givenNodes should be treated
as given (default = TRUE). Otherwise (and by default) such a node may be
grouped into a conditionally independent set, resulting in more output nodes
than input nodes.

returnType Either "names" for returned nodes to be node names or "ids" for returned nodes
to be graph IDs.

returnScalarComponents

If FALSE (default), multivariate nodes are returned as full names (e.g. x[1:3]).
If TRUE, they are returned as scalar elements (e.g. x[1], x[2], x[3]).

endAsGiven If TRUE, end nodes (defined as nodes with stochastic parents but no stochastic
children, skipping through deterministic nodes) are included in the default for
givenNodes.

Details

This function returns sets of conditionally independent nodes. Multiple input nodes might be in the
same set or different sets.

The nodes input and the returned sets include only stochastic nodes because conditional indepen-
dence is a property of random variables. Deterministic nodes are considered in determining the sets.
givenNodes may contain stochastic or deterministic nodes.

Value

List of nodes that are in conditionally independent sets. With each set, nodes are returned in topo-
logically sorted order. The sets themselves are returned in topologically sorted order of their first
nodes.

Other nodes (not in nodes) may be included in the output if unknownAsGiven=FALSE.

Author(s)

Perry de Valpine

getDefinition Get nimbleFunction definition

Description

Returns a list containing the nimbleFunction definition components (setup function, run function,
and other member methods) for the supplied nimbleFunction generator or specialized instance.

74 getMacroParameters

Usage

getDefinition(nf)

Arguments

nf A nimbleFunction generator, or a compiled or un-compiled specialized nimble-
Function.

Author(s)

Daniel Turek

getMacroParameters EXPERIMENTAL: Get list of parameter names generated by model
macros

Description

Get a list of all parameter names (or certain categories of parameters) generated by model macros
in the model code.

Usage

getMacroParameters(
model,
includeLHS = TRUE,
includeRHS = TRUE,
includeDeterm = TRUE,
includeStoch = TRUE,
includeIndexPars = FALSE

)

Arguments

model A NIMBLE model object

includeLHS Include generated parameters on the left-hand side (LHS) of assignments (<- or
~) in the output

includeRHS Include generated parameters on the left-hand side (RHS) of assignments (<- or
~) in the output

includeDeterm Include deterministic generated parameters in the output

includeStoch Include stochastic generated parameters in the output
includeIndexPars

Include index parameters generated for use in for loops in the output

getNimbleOption 75

Details

Some model macros will generate new parameters to be included in the output code. NIMBLE
automatically detects these new parameters and records them in the model object. This function
allows easy access to this stored list, or subsets of it (see arguments).

Value

A named list of generated parameters, with the element names corresponding to the original source
macro.

Examples

nimbleOptions(enableMacros = TRUE)
nimbleOptions(enableMacroComments = FALSE)
nimbleOptions(verbose = FALSE)

testMacro <- list(process = function(code, modelInfo, .env){
code <- quote({
for (i_ in 1:n){

mu[i_] <- alpha + beta
y[i_] ~ dnorm(0, sigma)

}
alpha ~ dnorm(0, 1)

})
list(code = code, modelInfo=modelInfo)

})
class(testMacro) <- "model_macro"

code <- nimbleCode({
y[1:n] ~ testMacro()

})

const <- list(y = rnorm(10), n = 10)

mod <- nimbleModel(code, constants=const)

mod$getMacroParameters()
should be list(testMacro = list(c("mu", "alpha", "beta", "sigma")))

mod$getMacroParameters(includeRHS = FALSE)
should be list(testMacro = list(c("mu", "alpha")))

getNimbleOption Get NIMBLE Option

Description

Allow the user to get the value of a global _option_ that affects the way in which NIMBLE operates

76 getParam

Usage

getNimbleOption(x)

Arguments

x a character string holding an option name

Value

The value of the option.

Author(s)

Christopher Paciorek

Examples

getNimbleOption('verifyConjugatePosteriors')

getParam Get value of a parameter of a stochastic node in a model

Description

Get the value of a parameter for any single stochastic node in a model.

Usage

getParam(model, node, param, nodeFunctionIndex, warn = TRUE)

Arguments

model A NIMBLE model object

node The name of a stochastic node in the model

param The name of a parameter for the node

nodeFunctionIndex

For internal NIMBLE use only

warn For internal NIMBLE use only

getSamplesDPmeasure 77

Details

Standard usage is as a method of a model, in the form model$getParam(node, param), but the
usage as a simple function with the model as the first argument as above is also allowed.

For example, suppose node ’x[1:5]’ follows a multivariate normal distribution (dmnorm) in a model
declared by BUGS code. model$getParam(’x[1:5]’, ’mean’) would return the current value of the
mean parameter (which may be determined from other nodes). The parameter requested does not
have to be part of the parameterization used to declare the node. Rather, it can be any parameter
known to the distribution. For example, one can request the scale or rate parameter of a gamma
distribution, regardless of which one was used to declare the node.

getSamplesDPmeasure Get posterior samples for a Dirichlet process measure

Description

This function obtains posterior samples from a Dirichlet process distributed random measure of a
model specified using the dCRP distribution.

Usage

getSamplesDPmeasure(
MCMC,
epsilon = 1e-04,
setSeed = FALSE,
progressBar = getNimbleOption("MCMCprogressBar")

)

Arguments

MCMC an MCMC class object, either compiled or uncompiled.

epsilon used for determining the truncation level of the representation of the random
measure.

setSeed Logical or numeric argument. If a single numeric value is provided, R’s random
number seed will be set to this value. In the case of a logical value, if TRUE, then
R’s random number seed will be set to 1. Note that specifying the argument
setSeed = 0 does not prevent setting the RNG seed, but rather sets the random
number generation seed to 0. Default value is FALSE.

progressBar Logical specifying whether to display a progress bar during execution (default
= TRUE). The progress bar can be permanently disabled by setting the system
option nimbleOptions(MCMCprogressBar = FALSE)

78 getSamplesDPmeasure

Details

This function provides samples from a random measure having a Dirichlet process prior. Realiza-
tions are almost surely discrete and represented by a (finite) stick-breaking representation (Sethu-
raman, 1994), whose atoms (or point masses) are independent and identically distributed. This
sampler can only be used with models containing a dCRP distribution.

The MCMC argument is an object of class MCMC provided by buildMCMC, or its compiled ver-
sion. The MCMC should already have been run, as getSamplesDPmeasure uses the posterior
samples to generate samples of the random measure. Note that the monitors associated with that
MCMC must include the cluster membership variable (which has the dCRP distribution), the clus-
ter parameter variables, all variables directly determining the dCRP concentration parameter, and
any stochastic parent variables of the cluster parameter variables. See help(configureMCMC) or
help(addMonitors) for information on specifying monitors for an MCMC.

The epsilon argument is optional and used to determine the truncation level of the random mea-
sure. epsilon is the tail probability of the random measure, which together with posterior samples
of the concentration parameter, determines the truncation level. The default value is 1e-4.

The output is a list of matrices. Each matrix represents a sample from the random measure. In
order to reduce the output’s dimensionality, the weights of identical atoms are added up. The stick-
breaking weights are named weights and the atoms are named based on the cluster variables in the
model.

For more details about sampling the random measure and determining its truncation level, see Sec-
tion 3 in Gelfand, A.E. and Kottas, A. 2002.

Author(s)

Claudia Wehrhahn and Christopher Paciorek

References

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639-650.

Gelfand, A.E. and Kottas, A. (2002). A computational approach for full nonparametric Bayesian
inference under Dirichlet process mixture models. Journal of Computational and Graphical Statis-
tics, 11(2), 289-305.

See Also

buildMCMC, configureMCMC,

Examples

Not run:
conf <- configureMCMC(model)
mcmc <- buildMCMC(conf)
cmodel <- compileNimble(model)
cmcmc <- compileNimble(mcmc, project = model)
runMCMC(cmcmc, niter = 1000)
outputG <- getSamplesDPmeasure(cmcmc)

End(Not run)

getsize 79

getsize Returns number of rows of modelValues

Description

Returns the number of rows of NIMBLE modelValues object. Works in R and NIMBLE.

Usage

getsize(container)

Arguments

container modelValues object

Details

See the User Manual or help(modelValuesBaseClass) for information about modelValues objects

Author(s)

Clifford Anderson-Bergman

Examples

mvConf <- modelValuesConf(vars = 'a', types = 'double', sizes = list(a = 1))
mv <- modelValues(mvConf)
resize(mv, 10)

getsize(mv)

identityMatrix Create an Identity matrix (Deprecated)

Description

Returns a d-by-d identity matrix (square matrix of 0’s, with 1’s on the main diagnol).

Usage

identityMatrix(d)

Arguments

d The size of the identity matrix to return, will return a d-by-d matrix

https://r-nimble.org/html_manual/cha-welcome-nimble.html

80 initializeModel

Details

This function can be used in NIMBLE run code. It is deprecated because now one can use diag(d)
instead.

Value

A d-by-d identity matrix

Author(s)

Daniel Turek

Examples

Id <- identityMatrix(d = 3)

initializeModel Performs initialization of nimble model node values and log probabil-
ities

Description

Performs initialization of nimble model node values and log probabilities

Usage

initializeModel(model, silent = FALSE)

Arguments

model A setup argument, which specializes an instance of this nimble function to a
particular model.

silent logical indicating whether to suppress logging information

Details

This nimbleFunction may be used at the beginning of nimble algorithms to perform model initial-
ization. The intended usage is to specialize an instance of this nimbleFunction in the setup function
of an algorithm, then execute that specialied function at the beginning of the algorithm run function.
The specialized function takes no arguments.

Executing this function ensures that all right-hand-side only nodes have been assigned real values,
that all stochastic nodes have a real value, or otherwise have their simulate() method called, that all
deterministic nodes have their simulate() method called, and that all log-probabilities have been cal-
culated with the current model values. An error results if model initialization encounters a problem,
for example a missing right-hand-side only node value.

Interval 81

Author(s)

Daniel Turek

Examples

myNewAlgorithm <- nimbleFunction(
setup = function(model, ...) {

my_initializeModel <- initializeModel(model)
....

},
run = function(...) {

my_initializeModel()
....

}
)

Interval Interval calculations

Description

Calculations to handle censoring

Usage

dinterval(x, t, c, log = FALSE)

rinterval(n = 1, t, c)

Arguments

x vector of interval indices.

t vector of values.

c vector of one or more values delineating the intervals.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

Used for working with censoring in BUGS code. Taking c to define the endpoints of two or more
intervals (with implicit endpoints of plus/minus infinity), x (or the return value of rinterval) gives
the non-negative integer valued index of the interval in which t falls. See the NIMBLE manual for
additional details.

82 Inverse-Gamma

Value

dinterval gives the density and rinterval generates random deviates, but these are unusual as
the density is 1 if x indicates the interval in which t falls and 0 otherwise and the deviates are simply
the interval(s) in which t falls.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

endpoints <- c(-3, 0, 3)
vals <- c(-4, -1, 1, 5)
x <- rinterval(4, vals, endpoints)
dinterval(x, vals, endpoints)
dinterval(c(1, 5, 2, 3), vals, endpoints)

Inverse-Gamma The Inverse Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the inverse gamma dis-
tribution with rate or scale (mean = scale / (shape - 1)) parameterizations.

Usage

dinvgamma(x, shape, scale = 1, rate = 1/scale, log = FALSE)

rinvgamma(n = 1, shape, scale = 1, rate = 1/scale)

pinvgamma(
q,
shape,
scale = 1,
rate = 1/scale,
lower.tail = TRUE,
log.p = FALSE

)

qinvgamma(
p,
shape,
scale = 1,

Inverse-Gamma 83

rate = 1/scale,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

x vector of values.

shape vector of shape values, must be positive.

scale vector of scale values, must be positive.

rate vector of rate values, must be positive.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

The inverse gamma distribution with parameters shape = α and scale = σ has density

f(x) =
sa

Γ(α)
x−(α+1)e−σ/x

for x ≥ 0, α > 0 and σ > 0. (Here Γ(α) is the function implemented by R’s gamma() and defined
in its help.

The mean and variance are E(X) = σ
α − 1 and V ar(X) = σ2

(α−1)2(α−2) , with the mean defined
only for α > 1 and the variance only for α > 2.

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dinvgamma gives the density, pinvgamma gives the distribution function, qinvgamma gives the quan-
tile function, and rinvgamma generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

84 Inverse-Wishart

Examples

x <- rinvgamma(50, shape = 1, scale = 3)
dinvgamma(x, shape = 1, scale = 3)

Inverse-Wishart The Inverse Wishart Distribution

Description

Density and random generation for the Inverse Wishart distribution, using the Cholesky factor of
either the scale matrix or the rate matrix.

Usage

dinvwish_chol(x, cholesky, df, scale_param = TRUE, log = FALSE)

rinvwish_chol(n = 1, cholesky, df, scale_param = TRUE)

Arguments

x vector of values.

cholesky upper-triangular Cholesky factor of either the scale matrix (when scale_param
is TRUE) or rate matrix (otherwise).

df degrees of freedom.

scale_param logical; if TRUE the Cholesky factor is that of the scale matrix; otherwise, of
the rate matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A for mathematical details. The rate matrix as used here is defined as
the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dinvwish_chol gives the density and rinvwish_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

is.nf 85

See Also

Distributions for other standard distributions

Examples

df <- 40
ch <- chol(matrix(c(1, .7, .7, 1), 2))
x <- rwish_chol(1, ch, df = df)
dwish_chol(x, ch, df = df)

is.nf check if a nimbleFunction

Description

Checks an object to determine if it is a nimbleFunction (i.e., a function created by nimbleFunction
using setup code).

Usage

is.nf(f, inputIsName = FALSE, where = -1)

Arguments

f object to be tested

inputIsName logical indicating whether the function is provided as the character name of the
function or the function object itself

where Optional argument needed due to R package namespace issues but which should
not need to be provided by a user.

See Also

nimbleFunction for how to create a nimbleFunction

86 LKJ

is.nl check if a nimbleList

Description

Checks an object to determine if it is a nimbleList (i.e., a list created by nlDef$new()).

Usage

is.nl(l)

Arguments

l object to be tested

See Also

nimbleList for how to create a nimbleList

LKJ The LKJ Distribution for the Cholesky Factor of a Correlation Matrix

Description

Density and random generation for the LKJ distribution for the Cholesky factor of a correlation
matrix.

Usage

dlkj_corr_cholesky(x, eta, p, log = FALSE)

rlkj_corr_cholesky(n = 1, eta, p)

Arguments

x upper-triangular Cholesky factor of a correlation matrix.

eta shape parameter.

p size of the correlation matrix (number of rows and columns); required because
random generation function has no information about dimension of matrix to
generate without this argument.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

makeBoundInfo 87

Details

See Stan Development Team for mathematical details.

Value

dlkj_corr_cholesky gives the density and rlkj_corr_cholesky generates random deviates.

Author(s)

Christopher Paciorek

References

Stan Development Team. Stan Reference Functions, version 2.27.

See Also

Distributions for other standard distributions

Examples

eta <- 3
x <- rlkj_corr_cholesky(1, eta, 5)
dlkj_corr_cholesky(x, eta, 5)

makeBoundInfo Make an object of information about a model-bound pairing for get-
Bound. Used internally

Description

Creates a simple getBound_info object, which has a list with a boundID and a type. Unlike
makeParamInfo this is more bare-bones, but keeping it for parallelism with getParam.

Usage

makeBoundInfo(model, nodes, bound)

Arguments

model A model such as returned by nimbleModel.
nodes A character string naming a stochastic nodes, such as 'mu'.
bound A character string naming a bound of the distribution, either 'lower' or 'upper'.

Details

This is used internally by getBound. It is not intended for direct use by a user or even a nimble-
Function programmer.

88 makeModelDerivsInfo

makeModelDerivsInfo Information on model structure used for derivatives

Description

Inspect structure of a nimble model to determine nodes needed as "update" and/or "constant" entries
in usage of nimDerivs. This will typically be used in the setup code of a nimbleFunction.

Usage

makeModelDerivsInfo(model, wrtNodes, calcNodes, dataAsConstantNodes = TRUE)

Arguments

model a nimble model object, such as returned from nimbleModel.

wrtNodes a character vector of node names in the model with respect to which derivatives
will be taken through a call to nimDerivs (same as derivs).

calcNodes a character vector of node names in the model that will be used in model$calculate(calcNodes)
while derivatives are being recorded.

dataAsConstantNodes

logical indicating whether data nodes in the model should automatically be
treated as "constant" entries (TRUE) or "update" entries (FALSE). Defaults to
TRUE.

Details

In the compilable parts of a nimbleFunction (i.e. run or other method code, not setup code),
a call like nimDerivs(foo(x), ...) records derivatives of foo(x). If foo contains any calls to
model$calculate(calcNodes), it may be necessary to provide auxiliary information about the
model in further arguments to nimDerivs, specifically the model, updateNodes and constantNodes
arguments. ‘makeModelDerivsInfo‘ is a utility to set up that information for typical use cases. It
returns a list with elements updateNodes and constantNodes to be passed as arguments of the
same name to nimDerivs (along with passing the model as the model argument).

The reason auxiliary information is needed is that recording of derivatives uses a different model
than for regular calculations. Together, updateNodes and constantNodes should contain all nodes
whose values are needed for the model calculations being recorded and that are not part of wrtNodes.
These may include parents of nodes that are in calcNodes but are not themselves in calcNodes, as
well as the values of stochastic nodes in calcNodes, which are needed to calculate the correspond-
ing log probabilities. updateNodes will have their values updated from the regular model every
time that recorded derivative calculations are used. constantNodes will not be updated every time,
which means their values will be permanently fixed either the first time the call to ‘nimDerivs‘ is in-
voked or on any subsequent call that has reset=TRUE. Use of constantNodes can be slightly more
efficient, but one must be careful to be aware that values will not be updated unless reset=TRUE.
See the automatic differentiation section of the User Manual for more information.

In the above explanation, care must be taken to understand what should be included in wrtNodes.
In a typical use case, some arguments to foo are put into the model using values(model, nodes)

makeParamInfo 89

<-some_foo_arguments. Next there is typically a call to model$calculate(calcNodes). Here
the nodes are considered "with-respect-to" nodes because derivative tracking will follow the ar-
guments of foo, including when they are put into a model and hence used in model$calculate.
Therefore these nodes should be the wrtNodes for makeModelDerivsInfo.

Value

A list with elements updateNodes and constantNodes. These shouls be provided as the same-
named arguments to nimDerivs (same as derivs).

When using double-taping of derivatives (i.e. foo contains another call to nimDerivs), both calls
to nimDerivs should include the model, updateNodes, and constantNodes arguments.

makeParamInfo Make an object of information about a model-parameter pairing for
getParam. Used internally

Description

Creates a simple getParam_info object, which has a list with a paramID and a type

Usage

makeParamInfo(model, nodes, param, vector = FALSE)

Arguments

model A model such as returned by nimbleModel.

nodes A character string naming one one or more stochastic nodes, such as "mu",
"c(’mu’, ’beta[2]’)", or "eta[1:3, 2]". getParam only works for one node at a
time, but if it is indexed (nodes[i]), then makeParamInfo sets up the information
for the entire vector nodes. The processing pathway is used by the NIMBLE
compiler.

param A character string naming a parameter of the distribution followed by node, such
as "mean", "rate", "lambda", or whatever parameter names are relevant for the
distribution of the node.

vector A logical indicating whether nodes should definitely be treated as a vector in
compiled code, even if it has length = 1. For type consistency, the compiler
needs this option. If nodes has length > 1, this argument is ignored.

Details

This is used internally by getParam. It is not intended for direct use by a user or even a nimble-
Function programmer.

90 MCMCconf-class

MCMCconf-class Class MCMCconf

Description

Objects of this class configure an MCMC algorithm, specific to a particular model. Objects are
normally created by calling configureMCMC. Given an MCMCconf object, the actual MCMC func-
tion can be built by calling buildMCMC(conf). See documentation below for method initialize() for
details of creating an MCMCconf object.

Methods

addDefaultSampler(nodes = character(), control = list(), useConjugacy = getNimbleOption("MCMCuseConjugacy"), onlyRW = FALSE, onlySlice = FALSE, multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"), print = TRUE, ...)
For internal use. Adds default MCMC samplers to the specified nodes.

addMonitors(..., ind = 1, print = TRUE) Adds variables to the list of monitors.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

addMonitors2(..., print = TRUE) Adds variables to the list of monitors2.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors2 list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

addOneSampler(thisSamplerName, samplerFunction, targetOne, thisControlList, allowData, print)
For internal use only

addSampler(target = character(), type = "RW", control = list(), print = NULL, name, targetByNode = FALSE, multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"), expandTarget, scalarComponents, silent = FALSE, default = FALSE, useConjugacy = getNimbleOption("MCMCuseConjugacy"), onlyRW = FALSE, onlySlice = FALSE, allowData = FALSE, ...)
Adds a sampler to the list of samplers contained in the MCMCconf object.
Arguments:
target: The target node or nodes to be sampled. This may be specified as a character vector
of model node and/or variable names. For univariate samplers, only a single target node
should be provided (unless ’targetByNode’ is TRUE). For multivariate samplers, one instance
of the multivariate sampler will be assigned to all nodes specified. Nodes are specified in
combination with the ’targetByNode’ and ’multivariateNodesAsScalars’ arguments.
type: When ’default’ is FALSE, specifies the type of sampler to add, specified as either a char-
acter string or a nimbleFunction object. If the character argument type=’newSamplerType’,
then either newSamplerType or sampler_newSamplerType must correspond to a nimbleFunc-
tion (i.e. a function returned by nimbleFunction, not a specialized nimbleFunction). Alter-
natively, the type argument may be provided as a nimbleFunction itself rather than its name.
In that case, the ’name’ argument may also be supplied to provide a meaningful name for

MCMCconf-class 91

this sampler. The default value is ’RW’ which specifies scalar adaptive Metropolis-Hastings
sampling with a normal proposal distribution. This default will result in an error if ’target’
specifies more than one target node (unless ’targetByNode’ is TRUE). This argument is not
used when the ’default’ argument is TRUE.
control: An optional list of control arguments to sampler functions. These will override those
specified in the control list argument to configureMCMC. If a control list is provided, the
elements will be provided to all sampler functions which utilize the named elements given.
For example, the standard Metropolis-Hastings random walk sampler (sampler_RW) utilizes
control list elements ’adaptive’, ’adaptInterval’, ’scale’. The default values for control list
arguments for samplers (if not otherwise provided as an argument to configureMCMC or
addSampler) are contained in the setup code of each sampling algorithm.
print: Logical argument, specifying whether to print the details of newly added sampler(s).
name: Optional character string name for the sampler, which is used by the printSamplers
method. If ’name’ is not provided, the ’type’ argument is used to generate the sampler name.
targetByNode: Logical argument, with default FALSE. This arguments controls whether sep-
arate instances of the specified sampler ’type’ should be assigned to each node contained in
’target’. When FALSE, a single instance of sampler ’type’ is assigned to operate on ’target’.
When TRUE, potentially multiple instances of sampler ’type’ will be added to the MCMC
configuration, operating on the distinct nodes which compose ’target’. For example, if ’target’
is a vector of distinct node names, then a separate sampler will be assigned to each node in this
vector. If ’target’ is a model variable which itself is comprised of multiple distinct nodes, then
a separate sampler is assigned to each node composing the ’target’ variable. Additional con-
trol of the handling of multivariate nodes is provided using the ’multivariateNodesAsScalars’
argument.
multivariateNodesAsScalars: Logical argument, with default value FALSE. This argument is
used in two ways. Functionally, both uses result in separate instances of samplers being added
to the scalar components which compose multivariate nodes. See details below.
silent: Logical argument, specifying whether to print warning messages when assigning sam-
plers.
default: Logical argument, with default value FALSE. When FALSE, the ’type’ argument dic-
tates what sampling algorithm is assigned to the specified nodes. When TRUE, default sam-
plers will be assigned to the specified nodes following the same logic as the configureMCMC
method, and also using the ’useConjugacy’, ’onlyRW’, ’onlySlice’ and ’multivariateNode-
sAsScalars’ arguments.
useConjugacy: Logical argument, with default value TRUE. If specified as FALSE, then no
conjugate samplers will be used, even when a node is determined to be in a conjugate rela-
tionship. This argument is only used when the ’default’ argument is TRUE.
onlyRW: Logical argument, with default value FALSE. If specified as TRUE, then Metropolis-
Hastings random walk samplers will be assigned for all non-terminal continuous-valued nodes
nodes. Discrete-valued nodes are assigned a slice sampler, and terminal nodes are assigned
a posterior_predictive sampler. This argument is only used when the ’default’ argument is
TRUE.
onlySlice: Logical argument, with default value FALSE. If specified as TRUE, then a slice
sampler is assigned for all non-terminal nodes. Terminal nodes are still assigned a poste-
rior_predictive sampler. This argument is only used when the ’default’ argument is TRUE.
allowData: Logical argument, with default value FALSE. When FALSE, samplers will not be
assigned to operate on data nodes, even if data nodes are included in ’target’. When TRUE,

92 MCMCconf-class

samplers will be assigned to ’target’ without regard to whether nodes are designated as data.
...: Additional named arguments passed through ... will be used as additional control list
elements.
Details:
Samplers are added to the end of the list of samplers for this MCMCconf object, and do not
replace any existing samplers. Samplers are removed using the removeSamplers method.
Invisibly returns a list of the current sampler configurations, which are samplerConf reference
class objects.
’multivariateNodesAsScalars’ has two usages. The first usage occurs when ’targetByNode’
is TRUE and therefore separate instances of sampler ’type’ are assigned to each node which
compose ’target’. In this first usage, this argument controls how multivariate nodes (those
included in the ’target’) are handled. If FALSE, any multivariate nodes in ’target’ have a single
instance of sampler ’type’ assigned. If TRUE, any multivariate nodes appearing in ’target’ are
themselves decomposed into their scalar elements, and a separate instance of sampler ’type’
is assigned to operate on each scalar element.
The second usage of ’multivariateNodesAsScalars’ occurs when ’default’ is TRUE, and there-
fore samplers are assigned according to the default logic of configureMCMC, which is further
controlled by the arguments ’useConjugacy’, ’onlyRW’, ’onlySlice’ and ’multivariateNode-
sAsScalars’. In this second usage, if ’multivariateNodesAsScalars’ is TRUE, then multivari-
ate nodes will be decomposed into their scalar components, and separate samplers assigned to
each scalar element. Note, however, that multivariate nodes appearing in conjugate relation-
ships will still be assigned the corresponding conjugate sampler (provided ’useConjugacy’ is
TRUE), regardless of the value of this argument. If ’multivariateNodesAsScalars’ is FALSE,
then a single multivarate sampler will be assigned to update each multivariate node. The
default value of this argument can be controlled using the nimble option ’MCMCmultivari-
ateNodesAsScalars’.

getMonitors() Returns a character vector of the current monitors
Details:
See the initialize() function

getMonitors2() Returns a character vector of the current monitors2
Details:
See the initialize() function

getSamplerDefinition(ind, print = FALSE) Returns the nimbleFunction definition of an MCMC
sampler.
Arguments:
ind: A numeric vector or character vector. A numeric vector may be used to specify the index
of the sampler definition to return, or a character vector may be used to indicate a target node
for which the sampler acting on this nodes will be printed. For example, getSamplerDefini-
tion(’x[2]’) will return the definition of the sampler whose target is model node ’x[2]’. If more
than one sampler function is specified, only the first is returned.
Returns a list object, containing the setup function, run function, and additional member meth-
ods for the specified nimbleFunction sampler.

getSamplerExecutionOrder() Returns a numeric vector, specifying the ordering of sampler func-
tion execution.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers().

MCMCconf-class 93

getSamplers(ind) Returns a list of samplerConf objects.
Arguments:
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplerConf objects to return, or a character vector may be used to indicate
a set of target nodes and/or variables, for which all samplers acting on these nodes will be
returned. For example, getSamplers(’x’) will return all samplerConf objects whose target is
model node ’x’, or whose targets are contained (entirely or in part) in the model variable ’x’.
If omitted, then all samplerConf objects in this MCMC configuration object are returned.

initialize(model, nodes, control = list(), monitors, thin = 1, monitors2 = character(), thin2 = 1, useConjugacy = getNimbleOption("MCMCuseConjugacy"), onlyRW = FALSE, onlySlice = FALSE, multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"), enableWAIC = getNimbleOption("MCMCenableWAIC"), controlWAIC = list(), print = TRUE, ...)
Creates a MCMC configuration for a given model. The resulting object is suitable as an argu-
ment to buildMCMC.
Arguments:
model: A NIMBLE model object, created from nimbleModel(...)
nodes: An optional character vector, specifying the nodes for which samplers should be cre-
ated. Nodes may be specified in their indexed form, ’y[1, 3]’, or nodes specified without
indexing will be expanded fully, e.g., ’x’ will be expanded to ’x[1]’, ’x[2]’, etc. If missing,
the default value is all non-data stochastic nodes. If NULL, then no samplers are added.
control: An optional list of control arguments to sampler functions. If a control list is provided,
the elements will be provided to all sampler functions which utilize the named elements given.
For example, the standard Metropolis-Hastings random walk sampler (sampler_RW) utilizes
control list elements ’adaptive’, ’adaptInterval’, ’scale’. The default values for control list
arguments for samplers (if not otherwise provided as an argument to configureMCMC() or
addSampler()) are contained in the setup code of each sampling algorithm.
monitors: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval ’thin’, and the samples
will be stored into the ’mvSamples’ object. The default value is all top-level stochastic nodes
of the model – those having no stochastic parent nodes.
monitors2: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval ’thin2’, and the samples
will be stored into the ’mvSamples2’ object. The default value is an empty character vector,
i.e. no values will be recorded.
thin: The thinning interval for ’monitors’. Default value is one.
thin2: The thinning interval for ’monitors2’. Default value is one.
useConjugacy: A logical argument, with default value TRUE. If specified as FALSE, then
no conjugate samplers will be used, even when a node is determined to be in a conjugate
relationship.
onlyRW: A logical argument, with default value FALSE. If specified as TRUE, then Metropolis-
Hastings random walk samplers will be assigned for all non-terminal continuous-valued nodes
nodes. Discrete-valued nodes are assigned a slice sampler, and terminal nodes are assigned a
posterior_predictive sampler.
onlySlice: A logical argument, with default value FALSE. If specified as TRUE, then a slice
sampler is assigned for all non-terminal nodes. Terminal nodes are still assigned a poste-
rior_predictive sampler.
multivariateNodesAsScalars: A logical argument, with default value FALSE. If specified as
TRUE, then non-terminal multivariate stochastic nodes will have scalar samplers assigned to
each of the scalar components of the multivariate node. The default value of FALSE results

94 MCMCconf-class

in a single block sampler assigned to the entire multivariate node. Note, multivariate nodes
appearing in conjugate relationships will be assigned the corresponding conjugate sampler
(provided useConjugacy == TRUE), regardless of the value of this argument.
enableWAIC: A logical argument, specifying whether to enable WAIC calculations for the
resulting MCMC algorithm. Defaults to the value of nimbleOptions(’MCMCenableWAIC’),
which in turn defaults to FALSE. Setting nimbleOptions(’MCMCenableWAIC’ = TRUE) will
ensure that WAIC is enabled for all calls to ‘configureMCMC‘ and ‘buildMCMC‘.
controlWAIC A named list of inputs that control the behavior of the WAIC calculation, passed
as the ’control’ input to ’buildWAIC’. See ’help(waic)‘.
print: A logical argument specifying whether to print the montiors and samplers. Default is
TRUE.
...: Additional named control list elements for default samplers, or additional arguments to be
passed to the autoBlock function when autoBlock = TRUE.

printMonitors() Prints all current monitors and monitors2
Details:
See the initialize() function

printSamplers(..., ind, type, displayControlDefaults = FALSE, displayNonScalars = FALSE, displayConjugateDependencies = FALSE, executionOrder = FALSE, byType = FALSE)
Prints details of the MCMC samplers.
Arguments:
...: Character node or variable names, or numeric indices. Numeric indices may be used to
specify the indices of the samplers to print, or character strings may be used to indicate a set
of target nodes and/or variables, for which all samplers acting on these nodes will be printed.
For example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or
whose targets are contained (entirely or in part) in the model variable ’x’. If omitted, then all
samplers are printed.
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplers to print, or a character vector may be used to indicate a set of target
nodes and/or variables, for which all samplers acting on these nodes will be printed. For
example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or whose
targets are contained (entirely or in part) in the model variable ’x’. If omitted, then all samplers
are printed.
type: a character vector containing sampler type names. Only samplers with one of these
specified types, as printed by this printSamplers method, will be displayed. Standard regular
expression mathing using is also applied.
displayConjugateDependencies: A logical argument, specifying whether to display the depen-
dency lists of conjugate samplers (default FALSE).
displayNonScalars: A logical argument, specifying whether to display the values of non-scalar
control list elements (default FALSE).
executionOrder: A logical argument, specifying whether to print the sampler functions in the
(possibly modified) order of execution (default FALSE).
byType: A logical argument, specifying whether the nodes being sampled should be printed,
sorted and organized according to the type of sampler (the sampling algorithm) which is acting
on the nodes (default FALSE).

removeSampler(...) Alias for removeSamplers method

removeSamplers(..., ind, print = FALSE) Removes one or more samplers from an MCMC-
conf object.

MCMCconf-class 95

This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the remaining set of samplers, sequentially, executing each sampler once.
Arguments:
...: Character node names or numeric indices. Character node names specify the node names
for samplers to remove, or numeric indices can provide the indices of samplers to remove.
ind: A numeric vector or character vector specifying the samplers to remove. A numeric vector
may specify the indices of the samplers to be removed. Alternatively, a character vector may
be used to specify a set of model nodes and/or variables, and all samplers whose ’target’ is
among these nodes will be removed. If omitted, then all samplers are removed.
print: A logical argument specifying whether to print the current list of samplers once the
removal has been done (default FALSE).

replaceSampler(...) Alias for replaceSamplers method

replaceSamplers(...) Replaces one or more samplers from an MCMCconf object with newly
specified sampler(s). Operation and arguments are identical to the ’addSampler’ method, with
the additional side effect of first removing any existing samplers which operate on the specified
node(s).
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the remaining set of samplers, sequentially, executing each sampler once.
See ’addSamplers’ for a description of the arguments.
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the newly specified set of samplers, sequentially, executing each sampler once.

resetMonitors() Resets the current monitors and monitors2 lists to nothing.
Details:
See the initialize() function

setMonitors(..., ind = 1, print = TRUE) Sets new variables to the list of monitors.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These replace the current monitors list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

setMonitors2(..., print = TRUE) Sets new variables to the list of monitors2.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These replace the current monitors2 list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

setSampler(...) Alias for setSamplers method

setSamplerExecutionOrder(order, print = FALSE) Sets the ordering in which sampler func-
tions will execute.
This allows some samplers to be "turned off", or others to execute multiple times in a single
MCMC iteration. The ordering in which samplers execute can also be interleaved.

96 MCMCconf-class

Arguments:
order: A numeric vector, specifying the ordering in which the sampler functions will execute.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers(). If this argument is omitted,
the sampler execution ordering is reset so as to sequentially execute each sampler once.
print: A logical argument specifying whether to print the current list of samplers in the modi-
fied order of execution (default FALSE).

setSamplers(..., ind, print = FALSE) Sets the ordering of the list of MCMC samplers.
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the specified set of samplers, sequentially, executing each sampler once.
Arguments:
...: Chracter strings or numeric indices. Character names may be used to specify the node
names for samplers to retain. Numeric indices may be used to specify the indicies for the new
list of MCMC samplers, in terms of the current ordered list of samplers.
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indicies for the new list of MCMC samplers, in terms of the current ordered list of samplers.
For example, if the MCMCconf object currently has 3 samplers, then the ordering may be
reversed by calling MCMCconf$setSamplers(3:1), or all samplers may be removed by calling
MCMCconf$setSamplers(numeric(0)).
Alternatively, a character vector may be used to specify a set of model nodes and/or variables,
and the sampler list will modified to only those samplers acting on these target nodes.
As another alternative, a list of samplerConf objects may be used as the argument, in which
case this ordered list of samplerConf objects will define the samplers in this MCMC config-
uration object, completely over-writing the current list of samplers. No checking is done to
ensure the validity of the contents of these samplerConf objects; only that all elements of the
list argument are, in fact, samplerConf objects.
print: A logical argument specifying whether to print the new list of samplers (default FALSE).

setThin(thin, print = TRUE, ind = 1) Sets the value of thin.
Arguments:
thin: The new value for the thinning interval ’thin’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

setThin2(thin2, print = TRUE) Sets the value of thin2.
Arguments:
thin2: The new value for the thinning interval ’thin2’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

Author(s)

Daniel Turek

modelBaseClass-class 97

See Also

configureMCMC

Examples

code <- nimbleCode({
mu ~ dnorm(0, 1)
x ~ dnorm(mu, 1)

})
Rmodel <- nimbleModel(code)
conf <- configureMCMC(Rmodel)
conf$setSamplers(1)
conf$addSampler(target = 'x', type = 'slice', control = list(adaptInterval = 100))
conf$addMonitors('mu')
conf$addMonitors2('x')
conf$setThin(5)
conf$setThin2(10)
conf$printMonitors()
conf$printSamplers()

modelBaseClass-class Class modelBaseClass

Description

This class underlies all NIMBLE model objects: both R model objects created from the return
value of nimbleModel(), and compiled model objects. The model object contains a variety of mem-
ber functions, for providing information about the model structure, setting or querying properties of
the model, or accessing various internal components of the model. These member functions of the
modelBaseClass are commonly used in the body of the setup function argument to nimbleFunc-
tion(), to aid in preparation of node vectors, nimbleFunctionLists, and other runtime inputs. See
documentation for nimbleModel for details of creating an R model object.

Methods

calculate(nodes) See ‘help(calculate)‘

calculateDiff(nodes) See ‘help(calculateDiff)‘

check() Checks for errors in model specification and for missing values that prevent use of calcu-
late/simulate on any nodes

checkBasics() Checks for size/dimension mismatches and for presence of NAs in model vari-
ables (the latter is not an error but a note of this is given to the user)

checkConjugacy(nodeVector, restrictLink = NULL) Determines whether or not the input nodes
appear in conjugate relationships
Arguments:
nodeVector: A character vector specifying one or more node or variable names. If omitted, all
stochastic non-data nodes are checked for conjugacy.

98 modelBaseClass-class

Details: The return value is a named list, with an element corresponding to each conjugate
node. The list names are the conjugate node names, and list elements are the control list
arguments required by the corresponding MCMC conjugate sampler functions. If no model
nodes are conjugate, an empty list is returned.

expandNodeNames(nodes, env = parent.frame(), returnScalarComponents = FALSE, returnType = "names", sort = FALSE, unique = TRUE)
Takes a vector of names of nodes or variables and returns the unique and expanded names in
the model, i.e. ’x’ expands to ’x[1]’, ’x[2]’, ...
Arguments:
nodes: a vector of names of nodes (or variables) to be expanded. Alternatively, can be a vector
of integer graph IDs, but this use is intended only for advanced users
returnScalarComponents: should multivariate nodes (i.e. dmnorm or dmulti) be broken up
into scalar components?
returnType: return type. Options are ’names’ (character vector) or ’ids’ (graph IDs)
sort: should names be topologically sorted before being returned?
unique: should names be the unique names or should original ordering of nodes (after expan-
sion of any variable names into node names) be preserved

getBound(node, bound) See ‘help(getBound)‘

getCode() Return the code for a model after processing if-then-else statements, expanding macros,
and replacing some keywords (e.g. nimStep for step) to avoid R ambiguity.

getConditionallyIndependentSets(nodes, givenNodes, omit = integer(), explore = c("both", "down", "up"), unknownAsGiven = TRUE, returnType = "names", returnScalarComponents = FALSE, endAsGiven = FALSE)
see "help(getConditionallyIndependentSets)", which this calls with the model as the first ar-
gument.

getConstants() Return model constants, including any changes to the constants made by macros.

getDependencies(nodes, omit = character(), self = TRUE, determOnly = FALSE, stochOnly = FALSE, includeData = TRUE, dataOnly = FALSE, includePredictive = getNimbleOption("getDependenciesIncludesPredictiveNodes"), predictiveOnly = FALSE, includeRHSonly = FALSE, downstream = FALSE, returnType = "names", returnScalarComponents = FALSE)
Returns a character vector of the nodes dependent upon the input argument nodes, sorted topo-
logically according to the model graph. In the genealogical metaphor for a graphical model,
this function returns the "children" of the input nodes. In the river network metaphor, it re-
turns downstream nodes. By default, the returned nodes include the input nodes, include both
deterministic and stochastic nodes, and stop at stochastic nodes. Additional input arguments
provide flexibility in the values returned.
Arguments:
nodes: Character vector of node names, with index blocks allowed, and/or variable names, the
dependents of which will be returned.
omit: Character vector of node names, which will be omitted from the nodes returned. In
addition, dependent nodes subsequent to these omitted nodes will not be returned. The omitted
nodes argument serves to stop the downward search within the hierarchical model structure,
and excludes the specified node.
self: Logical argument specifying whether to include the input argument nodes in the return
vector of dependent nodes. Default is TRUE.
determOnly: Logical argument specifying whether to return only deterministic nodes. Default
is FALSE.
stochOnly: Logical argument specifying whether to return only stochastic nodes. Default is
FALSE. If both determOnly and stochOnly are TRUE, no nodes will be returned.
includeData: Logical argument specifying whether to include ’data’ nodes (set via nimble-
Model or the setData method). Default is TRUE.

modelBaseClass-class 99

dataOnly: Logical argument specifying whether to return only ’data’ nodes. Default is FALSE.
includePredictive: Logical argument specifying whether to include predictive nodes. Predic-
tive nodes are stochastic nodes that are not data and have no downstream stochastic dependents
that are data. In Bayesian settings, these are "posterior predictive" nodes. Used primarily to
exclude predictive node calculations when setting up MCMC samplers on model parameters.
Default value is controlled by ‘nimbleOptions("getDependenciesIncludesPredictiveNodes")‘,
which has a default value of ‘TRUE‘.
predictiveOnly: Logical argument specifying whether to return only predictive nodes (see
"includePredictive"). Default is FALSE.
includeRHSonly: Logical argument specifying whether to include right-hand-side-only nodes
(model nodes which never appear on the left-hand-side of ~ or <- in the model code). These
nodes are neither stochastic nor deterministic, but instead function as variable inputs to the
model. Default is FALSE.
downstream: Logical argument specifying whether the downward search through the hier-
archical model structure should continue beyond the first and subsequent stochastic nodes
encountered, hence returning all nodes downstream of the input nodes. Default is FALSE.
returnType: Character argument specifying type of object returned. Options are ’names’ (re-
turns character vector) and ’ids’ (returns numeric graph IDs for model).
returnScalarComponenets: Logical argument specifying whether multivariate nodes should
be returned as full node names (i.e. ’x[1:2]’) or as scalar componenets (i.e. ’x[1]’ and ’x[2]’).
Details: The downward search for dependent nodes propagates through deterministic nodes,
but by default will halt at the first level of stochastic nodes encountered. Use getDependen-
ciesList for a list of one-step dependent nodes of each node in the model.

getDependenciesList(returnNames = TRUE, sort = TRUE) Returns a list of all dependent neigh-
bor relationships. Each list element gives the one-step dependencies of one vertex, and the
element name is the vertex label (integer ID or character node name)
Arguments:
returnNames: If TRUE (default), list names and element contents are returns as character node
names, e.g. ’x[1]’. If FALSE, everything is returned using graph IDs, which are unique integer
labels for each node.
sort: If TRUE (default), each list element is returned in topologically sorted order. If FALSE,
they are returned in arbitrary order.
Details: This provides a fairly raw representation of the graph (model) structure that may be
useful for inspecting what NIMBLE has created from model code.

getDimension(node, params = NULL, valueOnly = is.null(params) && !includeParams, includeParams = !is.null(params))
Determines the dimension of the value and/or parameters of the node
Arguments:
node: A character vector specifying a single node
params: an optional character vector of names of parameters for which dimensions are desired
(possibly including ’value’ and alternate parameters)
valueOnly: a logical indicating whether to only return the dimension of the value of the node
includeParams: a logical indicating whether to return dimensions of parameters. If TRUE and
’params’ is NULL then dimensions of all parameters, including the dimension of the value of
the node, are returned
Details: The return value is a numeric vector with an element for each parameter/value re-
quested.

100 modelBaseClass-class

getDistribution(nodes) Returns the names of the distributions for the requested node or nodes
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

getDownstream(...) Identical to getDependencies(..., downstream = TRUE)
Details: See documentation for member method getDependencies.

getLogProb(nodes) See ‘help(getLogProb)‘
getMacroInits() EXPERIMENTAL: Return initial values generated by macros.
getMacroParameters(includeLHS = TRUE, includeRHS = TRUE, includeDeterm = TRUE, includeStoch = TRUE, includeIndices = FALSE)

See ‘help(getMacroParameters)‘
getNodeNames(determOnly = FALSE, stochOnly = FALSE, includeData = TRUE, dataOnly = FALSE, includeRHSonly = FALSE, topOnly = FALSE, latentOnly = FALSE, endOnly = FALSE, includePredictive = TRUE, predictiveOnly = FALSE, returnType = "names", returnScalarComponents = FALSE)

Returns a character vector of all node names in the model, in topologically sorted order. A
variety of logical arguments allow for flexible subsetting of all model nodes.
Arguments:
determOnly: Logical argument specifying whether to return only deterministic nodes. Default
is FALSE.
stochOnly: Logical argument specifying whether to return only stochastic nodes. Default is
FALSE.
includeData: Logical argument specifying whether to include ’data’ nodes (set via the member
method setData). Default is TRUE.
dataOnly: Logical argument specifying whether to return only ’data’ nodes. Default is FALSE.
includeRHSonly: Logical argument specifying whether to include right-hand-side-only nodes
(model nodes which never appear on the left-hand-side of ~ or <- in the model code). Default
is FALSE.
topOnly: Logical argument specifying whether to return only top-level nodes from the hierar-
chical model structure.
latentOnly: Logical argument specifying whether to return only latent (mid-level) nodes from
the hierarchical model structure.
endOnly: Logical argument specifying whether to return only end nodes from the hierarchical
model structure.
includePredictive: Logical argument specifying whether to include predictive nodes (stochas-
tic nodes, which themselves are not data and have no downstream stochastic dependents which
are data) from the hierarchical model structure.
predictiveOnly: Logical argument specifying whether to return only predictive nodes (stochas-
tic nodes, which themselves are not data and have no downstream stochastic dependents which
are data) from the hierarchical model structure.
returnType: Character argument specific type object returned. Options are ’names’ (returns
character vector) and ’ids’ (returns numeric graph IDs for model)
returnScalar Componenets: Logical argument specifying whether multivariate nodes should
return full node name (i.e. ’x[1:2]’) or should break down into scalar componenets (i.e. ’x[1]’
and ’x[2]’)
Details: Multiple logical input arguments may be used simultaneously. For example, ‘model$getNodeNames(endOnly
= TRUE, dataOnly = TRUE)‘ will return all end-level nodes from the model which are desig-
nated as ’data’.

modelBaseClass-class 101

getParam(node, param, warn = TRUE) See ‘help(getParam)‘

getParents(nodes, omit = character(), self = FALSE, determOnly = FALSE, stochOnly = FALSE, includeData = TRUE, dataOnly = FALSE, includeRHSonly = FALSE, upstream = FALSE, immediateOnly = FALSE, returnType = "names", returnScalarComponents = FALSE)
Returns a character vector of the nodes on which the input nodes depend, sorted topologically
according to the model graph, by default recursing and stopping at stochastic parent nodes.
In the genealogical metaphor for a graphical model, this function returns the "parents" of the
input nodes. In the river network metaphor, it returns upstream nodes. By default, the returned
nodes omit the input nodes. Additional input arguments provide flexibility in the values re-
turned.
Arguments:
nodes: Character vector of node names, with index blocks allowed, and/or variable names, the
parents of which will be returned.
omit: Character vector of node names, which will be omitted from the nodes returned. In
addition, parent nodes beyond these omitted nodes will not be returned. The omitted nodes
argument serves to stop the upward search through the hierarchical model structure, and ex-
cludes the specified node.
self: Logical argument specifying whether to include the input argument nodes in the return
vector of dependent nodes. Default is FALSE.
determOnly: Logical argument specifying whether to return only deterministic nodes. Default
is FALSE.
stochOnly: Logical argument specifying whether to return only stochastic nodes. Default is
FALSE. If both determOnly and stochOnly are TRUE, no nodes will be returned.
includeData: Logical argument specifying whether to include ’data’ nodes (set via nimble-
Model or the setData method). Default is TRUE.
dataOnly: Logical argument specifying whether to return only ’data’ nodes. Default is FALSE.
includeRHSonly: Logical argument specifying whether to include right-hand-side-only nodes
(model nodes which never appear on the left-hand-side of ~ or <- in the model code). These
nodes are neither stochastic nor deterministic, but instead function as variable inputs to the
model. Default is FALSE.
upstream: Logical argument specifying whether the upward search through the hierarchical
model structure should continue beyond the first and subsequent stochastic nodes encountered,
hence returning all nodes upstream of the input nodes. Default is FALSE.
immediateOnly: Logical argument specifying whether only the immediate parent nodes should
be returned, even if they are deterministic. If FALSE, getParents recurses and stops at stochas-
tic nodes. Default is FALSE.
returnType: Character argument specifying type of object returned. Options are ’names’ (re-
turns character vector) and ’ids’ (returns numeric graph IDs for model).
returnScalarComponenets: Logical argument specifying whether multivariate nodes should
be returned as full node names (i.e. ’x[1:2]’) or as scalar componenets (i.e. ’x[1]’ and ’x[2]’).
Details: The upward search for dependent nodes propagates through deterministic nodes, but
by default will halt at the first level of stochastic nodes encountered. Use getParentsList for a
list of one-step parent nodes of each node in the model.

getParentsList(returnNames = TRUE, sort = TRUE) Returns a list of all parent neighbor rela-
tionships. Each list element gives the one-step parents of one vertex, and the element name is
the vertex label (integer ID or character node name)
Arguments:

102 modelBaseClass-class

returnNames: If TRUE (default), list names and element contents are returns as character node
names, e.g. ’x[1]’. If FALSE, everything is returned using graph IDs, which are unique integer
labels for each node.
sort: If TRUE (default), each list element is returned in topologically sorted order. If FALSE,
they are returned in arbitrary order.
Details: This provides a fairly raw representation of the graph (model) structure that may be
useful for inspecting what NIMBLE has created from model code.

getVarNames(includeLogProb = FALSE, nodes) Returns the names of all variables in a model,
optionally including the logProb variables
Arguments:
logProb: Logical argument specifying whether or not to include the logProb variables. Default
is FALSE.
nodes: An optional character vector supplying a subset of nodes for which to extract the
variable names and return the unique set of variable names

initializeInfo(stochasticLogProbs = FALSE) Provides more detailed information on which
model nodes are not initialized.
Arguments:
stochasticLogProbs: Boolean argument. If TRUE, the log-density value associated with each
stochastic model variable is calculated and printed.

isBinary(nodes) Determines whether one or more nodes represent binary random variables
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isData(nodes) Returns a vector of logical TRUE / FALSE values, corresponding to the ’data’
flags of the input node names.
Arguments:
nodes: A character vector of node or variable names.
Details: The variable or node names specified is expanded into a vector of model node names.
A logical vector is returned, indicating whether each model node has been flagged as contain-
ing ’data’. Multivariate nodes for which any elements are flagged as containing ’data’ will be
assigned a value of TRUE.

isDeterm(nodes, includeRHSonly = FALSE, nodesAlreadyExpanded = FALSE) Determines whether
one or more nodes are deterministic
Arguments:
nodes: A character vector specifying one or more node or variable names.
nodesAlreadyExpanded: Boolean argument indicating whether ‘nodes‘ should be expanded.
Generally intended for internal use. Default is ‘FALSE‘.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isDiscrete(nodes) Determines whether one or more nodes represent discrete random variables
Arguments:

modelBaseClass-class 103

nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isEndNode(nodes) Determines whether one or more nodes are end nodes (nodes with no stochas-
tic dependences)
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is logical vector with an element for each node indicated in the input.
Note that variable names are expanded to their constituent node names, so the length of the
output may be longer than that of the input.

isMultivariate(nodes) Determines whether one or more nodes represent multivariate nodes
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a logical vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isStoch(nodes, nodesAlreadyExpanded = FALSE) Determines whether one or more nodes are
stochastic
Arguments:
nodes: A character vector specifying one or more node or variable names.
nodesAlreadyExpanded: Boolean argument indicating whether ‘nodes‘ should be expanded.
Generally intended for internal use. Default is ‘FALSE‘.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isTruncated(nodes) Determines whether one or more nodes are truncated
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent nodes names, so the length
of the output may be longer than that of the input

isUnivariate(nodes) Determines whether one or more nodes represent univariate random vari-
ables
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent nodes names, so the length
of the output may be longer than that of the input

newModel(data = NULL, inits = NULL, modelName = character(), replicate = FALSE, check = getNimbleOption("checkModel"), calculate = TRUE)
Returns a new R model object, with the same model definiton (as defined from the original
model code) as the existing model object.
Arguments:

104 modelBaseClass-class

data: A named list specifying data nodes and values, for use in the newly returned model. If
not provided, the data argument from the creation of the original R model object will be used.
inits: A named list specifying initial valuse, for use in the newly returned model. If not
provided, the inits argument from the creation of the original R model object will be used.
modelName: An optional character string, used to set the internal name of the model object.
If provided, this name will propagate throughout the generated C++ code, serving to improve
readability.
replicate: Logical specifying whether to replicate all current values and data flags from the
current model in the new model. If TRUE, then the data and inits arguments are not used.
Default value is FALSE.
check: A logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’, see help on ’nimbleOptions’ for
details.
calculate: A logical indicating whether to run ’calculate’ on the model; this will calculate all
deterministic nodes and logProbability values given the current state of all nodes. Default is
TRUE. For large models, one might want to disable this, but note that deterministic nodes,
including nodes introduced into the model by NIMBLE, may be NA.
Details: The newly created model object will be identical to the original model in terms of
structure and functionality, but entirely distinct in terms of the internal values.

resetData() Resets the ’data’ property of ALL model nodes to FALSE. Subsequent to this call,
the model will have no nodes flagged as ’data’.

setData(..., warnAboutMissingNames = TRUE) Sets the ’data’ flag for specified stochastic nodes
to TRUE, and also sets the value of these nodes to the value provided. This is the exclusive
method for specifying ’data’ nodes in a model object. When a ’data’ argument is provided
to ’nimbleModel()’, it uses this method to set the data nodes. This also allows one to set
the ’data’ flag for nodes appearing only on the right-hand side of model declarations, thereby
preventing their values from being overwritten via ’inits’.
Arguments:
...: Arguments may be provided as named elements with numeric values or as character names
of model variables. These may be provided in a single list, a single character vector, or as
multiple arguments. When a named element with a numeric value is provided, the size and
dimension must match the corresponding model variable. This value will be copied to the
model variable and any non-NA elements will be marked as data. When a character name
is provided, the value of that variable in the model is not changed but any currently non-NA
values are marked as data. Examples: setData(’x’, y = 1:10) will mark both x and y as data
and will set the value of y to 1:10. setData(list(’x’, y = 1:10)) is equivalent. setData(c(’x’,’y’))
or setData(’x’,’y’) will mark both x and y as data.
Details: If a provided value (or the current value in the model when only a name is specified)
contains some NA values, then the model nodes corresponding to these NAs will not have their
value set, and will not be designated as ’data’. Only model nodes corresponding to numeric
values in the argument list elements will be designated as data. Designating a deterministic
model node as ’data’ will be ignored. Designating part of a multivariate node as ’data’ and part
as non-data (NA) is allowed, but ’isData()’ will report such a node as being ’data’, calculations
with the node will generally return NA, and MCMC samplers will not be assigned to such
nodes.

setInits(inits) Sets initial values (or more generally, any named list of value elements) into the
model

modelDefClass-class 105

Arguments:
inits: A named list. The names of list elements must correspond to model variable names.
The elements of the list must be of class numeric, with size and dimension each matching the
corresponding model variable.

simulate(nodes, includeData = FALSE) See ‘help(simulate)‘

topologicallySortNodes(nodes, returnType = "names") Sorts the input list of node names
according to the topological dependence ordering of the model structure.
Arguments:
nodes: A character vector of node or variable names, which is to be topologically sorted.
Alternatively can be a numeric vector of graphIDs
returnType: character vector indicating return type. Choices are "names" or "ids"
Details: This function merely reorders its input argument. This may be important prior to
calls such as model$simulate(nodes) or model$calculate(nodes), to enforce that the operation
is performed in topological order.

Author(s)

Daniel Turek

See Also

initializeModel

Examples

code <- nimbleCode({
mu ~ dnorm(0, 1)
x[1] ~ dnorm(mu, 1)
x[2] ~ dnorm(mu, 1)

})
Rmodel <- nimbleModel(code)
modelVars <- Rmodel$getVarNames() ## returns 'mu' and 'x'
modelNodes <- Rmodel$getNodeNames() ## returns 'mu', 'x[1]' and 'x[2]'
Rmodel$resetData()
Rmodel$setData(list(x = c(1.2, NA))) ## flags only 'x[1]' node as data
Rmodel$isData(c('mu', 'x[1]', 'x[2]')) ## returns c(FALSE, TRUE, FALSE)

modelDefClass-class Class for NIMBLE model definition

Description

Class for NIMBLE model definition that is not usually needed directly by a user.

Details

See modelBaseClass for information about creating NIMBLE BUGS models.

106 modelValues

modelInitialization Information on initial values in a NIMBLE model

Description

Having uninitialized nodes in a NIMBLE model can potentially cause some algorithms to fail and
can lead to poor performance in others. Here are some general guidelines on how non-initialized
variables can affect performance:

• MCMC will auto-initialize but will do so from the prior distribution. This can cause slow
convergence, especially in the case of diffuse priors.

• Likewise, particle filtering methods will initialize top-level parameters from their prior distri-
butions, which can lead to errors or poor performance in these methods.

Please see this Section (https://r-nimble.org/html_manual/cha-mcmc.html#sec:initMCMC)
of the NIMBLE user manual for further suggestions.

modelValues Create a NIMBLE modelValues Object

Description

Builds modelValues object from a model values configuration object, which can include a NIMBLE
model

Usage

modelValues(conf, m = 1)

Arguments

conf An object which includes information for building modelValues. Can either be
a NIMBLE model (see help(modelBaseClass)) or the object returned from
modelValuesConf

m The number of rows to create in the modelValues object. Can later be changed
with resize

Details

See the User Manual or help(modelValuesBaseClass) for information about manipulating NIM-
BLE modelValues object returned by this function

Author(s)

NIMBLE development team

https://r-nimble.org/html_manual/cha-mcmc.html#sec:initMCMC
https://r-nimble.org/html_manual/cha-welcome-nimble.html

modelValuesBaseClass-class 107

Examples

#From model object:
code <- nimbleCode({
a ~ dnorm(0,1)
for(i in 1:3){
for(j in 1:3)
b[i,j] ~ dnorm(0,1)
}

})
Rmodel <- nimbleModel(code)
Rmodel_mv <- modelValues(Rmodel, m = 2)
#Custom modelValues object:
mvConf <- modelValuesConf(vars = c('x', 'y'),

types = c('double', 'int'),
sizes = list(x = 3, y = c(2,2)))

custom_mv <- modelValues(mvConf, m = 2)
custom_mv['y',]

modelValuesBaseClass-class

Class modelValuesBaseClass

Description

modelValues are NIMBLE containers built to store values from models. They can either be built
directly from a model or be custom built via the modelValuesConf function. They consist of rows,
where each row can be thought of as a set of values from a model. Like most nimble objects, and
unlike most R objects, they are passed by reference instead of by value.

See the User Manual for more details.

Examples

mvConf <- modelValuesConf(vars = c('a', 'b'),
types = c('double', 'double'),
sizes = list(a = 1, b = c(2,2)))

mv <- modelValues(mvConf)
as.matrix(mv)
resize(mv, 2)
as.matrix(mv)
mv['a',1] <- 1
mv['a',2] <- 2
mv['b',1] <- matrix(0, nrow = 2, ncol = 2)
mv['b',2] <- matrix(1, nrow = 2, ncol = 2)
mv['a',]
as.matrix(mv)
basicModelCode <- nimbleCode({
a ~ dnorm(0,1)
for(i in 1:4)
b[i] ~ dnorm(0,1)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

108 modelValuesConf

})
basicModel <- nimbleModel(basicModelCode)
basicMV <- modelValues(basicModel, m = 2) # m sets the number of rows
basicMV['b',]

modelValuesConf Create the confs for a custom NIMBLE modelValues object

Description

Builds an R-based modelValues conf object

Usage

modelValuesConf(
symTab,
className,
vars,
types,
sizes,
modelDef = NA,
where = globalenv()

)

Arguments

symTab For internal use only

className For internal use only

vars A vector of character strings naming each variable in the modelValues object

types A vector of character strings describing the type of data for the modelValues
object. Options include ‘double’ (for real-valued variables) and ‘int’.

sizes A list in which the named items of the list match the var arguments and each
item is a numeric vector of the dimensions

modelDef For internal use only

where For internal use only

Details

See the User Manual or help(modelValuesBaseClass) and help(modelValues) for information

Author(s)

Clifford Anderson-Bergman

https://r-nimble.org/html_manual/cha-welcome-nimble.html

Multinomial 109

Examples

#Custom modelValues object:
mvConf <- modelValuesConf(vars = c('x', 'y'),

types = c('double', 'int'),
sizes = list(x = 3, y = c(2,2)))

custom_mv <- modelValues(mvConf, m = 2)
custom_mv['y',]

Multinomial The Multinomial Distribution

Description

Density and random generation for the multinomial distribution

Usage

dmulti(x, size = sum(x), prob, log = FALSE)

rmulti(n = 1, size, prob)

Arguments

x vector of values.

size number of trials.

prob vector of probabilities, internally normalized to sum to one, of same length as x

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dmulti gives the density and rmulti generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

110 Multivariate-t

See Also

Distributions for other standard distributions

Examples

size <- 30
probs <- c(1/4, 1/10, 1 - 1/4 - 1/10)
x <- rmulti(1, size, probs)
dmulti(x, size, probs)

Multivariate-t The Multivariate t Distribution

Description

Density and random generation for the multivariate t distribution, using the Cholesky factor of either
the precision matrix (i.e., inverse scale matrix) or the scale matrix.

Usage

dmvt_chol(x, mu, cholesky, df, prec_param = TRUE, log = FALSE)

rmvt_chol(n = 1, mu, cholesky, df, prec_param = TRUE)

Arguments

x vector of values.

mu vector of values giving the location of the distribution.

cholesky upper-triangular Cholesky factor of either the precision matrix (i.e., inverse scale
matrix) (when prec_param is TRUE) or scale matrix (otherwise).

df degrees of freedom.

prec_param logical; if TRUE the Cholesky factor is that of the precision matrix; otherwise,
of the scale matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The ’precision’
matrix as used here is defined as the inverse of the scale matrix, Σ−1, given in Gelman et al.

Value

dmvt_chol gives the density and rmvt_chol generates random deviates.

MultivariateNormal 111

Author(s)

Peter Sujan

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

mu <- c(-10, 0, 10)
scalemat <- matrix(c(1, .9, .3, .9, 1, -0.1, .3, -0.1, 1), 3)
ch <- chol(scalemat)
x <- rmvt_chol(1, mu, ch, df = 1, prec_param = FALSE)
dmvt_chol(x, mu, ch, df = 1, prec_param = FALSE)

MultivariateNormal The Multivariate Normal Distribution

Description

Density and random generation for the multivariate normal distribution, using the Cholesky factor
of either the precision matrix or the covariance matrix.

Usage

dmnorm_chol(x, mean, cholesky, prec_param = TRUE, log = FALSE)

rmnorm_chol(n = 1, mean, cholesky, prec_param = TRUE)

Arguments

x vector of values.

mean vector of values giving the mean of the distribution.

cholesky upper-triangular Cholesky factor of either the precision matrix (when prec_param
is TRUE) or covariance matrix (otherwise).

prec_param logical; if TRUE the Cholesky factor is that of the precision matrix; otherwise,
of the covariance matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

112 nfMethod

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The rate matrix as
used here is defined as the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dmnorm_chol gives the density and rmnorm_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

mean <- c(-10, 0, 10)
covmat <- matrix(c(1, .9, .3, .9, 1, -0.1, .3, -0.1, 1), 3)
ch <- chol(covmat)
x <- rmnorm_chol(1, mean, ch, prec_param = FALSE)
dmnorm_chol(x, mean, ch, prec_param = FALSE)

nfMethod access (call) a member function of a nimbleFunction

Description

Internal function for accessing a member function (method) of a nimbleFunction. Normally a user
will write nf$method(x) instead of nfMethod(nf, method)(x).

Usage

nfMethod(nf, methodName)

Arguments

nf a specialized nimbleFunction, i.e. one that has already had setup parameters
processed

methodName a character string giving the name of the member function to call

nfVar 113

Details

nimbleFunctions have a default member function called run, and may have other member functions
provided via the methods argument to nimbleFunction. As an internal step, the NIMBLE compiler
turns nf$method(x) into nfMethod(nf, method)(x), but a NIMBLE user or programmer would
not normally need to use nfMethod directly.

Value

a function that can be called.

Author(s)

NIMBLE development team

nfVar Access or set a member variable of a nimbleFunction

Description

Access or set a member variable of a specialized nimbleFunction, i.e. a variable passed to or created
during the setup function that is used in run code or preserved by setupOutputs. Works in R for
any variable and in NIMBLE for numeric variables.

Usage

nfVar(nf, varName)

nfVar(nf, varName) <- value

Arguments

nf a specialized nimbleFunction, i.e. a function returned by executing a function
returned from nimbleFunction with setup arguments

varName a character string naming a variable in the setup function.
value value to set the variable to.

Details

Internal way to access or set a member variable of a nimbleFunction created during setup. Nor-
mally in NIMBLE code you would use nf$var instead of nfVar(nf, var).

When nimbleFunction is called and a setup function is provided, then nimbleFunction returns
a function. That function is a generator that should be called with arguments to the setup function
and returns another function with run and possibly other member functions. The member functions
can use objects created or passed to setup. During internal processing, the NIMBLE compiler
turns some cases of nf$var into nfVar(nf, var). These provide direct access to setup variables
(member data). nfVar is not typically called by a NIMBLE user or programmer.

For internal access to methods of nf, see nfMethod.

For more information, see ?nimbleFunction and the NIMBLE User Manual.

https://r-nimble.org/html_manual/cha-welcome-nimble.html

114 nimble-internal

Value

whatever varName is in the nimbleFunction nf.

Author(s)

NIMBLE development team

Examples

nfGen1 <- nimbleFunction(
setup = function(A) {
B <- matrix(rnorm(4), nrow = 2)
setupOutputs(B) ## preserves B even though it is not used in run-code
},
run = function() {

print('This is A', A, '\n')
})

nfGen2 <- nimbleFunction(
setup = function() {
nf1 <- nfGen1(1000)

},
run = function() {

print('accessing A:', nfVar(nf1, 'A'))
nfVar(nf1, 'B')[2,2] <<- -1000
print('accessing B:', nfVar(nf1, 'B'))

})

nf2 <- nfGen2()
nf2$run()

nimble-internal Functions and Classes Internal to NIMBLE

Description

Functions and classes used internally in NIMBLE and not expected to be called directly by users.
Some functions and classes not intended for direct use are documented and/or exported because they
are used within Reference Class methods for classes programmatically generated by NIMBLE.

Author(s)

NIMBLE Development Team

nimble-math 115

nimble-math Mathematical functions for BUGS and nimbleFunction programming

Description

Mathematical functions for use in BUGS code and in nimbleFunction programming (i.e., nimble-
Function run code). See Chapter 5 of the User Manual for more details.

Author(s)

NIMBLE Development Team

nimble-R-functions NIMBLE language functions for R-like vector construction

Description

The functions c, rep, seq, which, diag, length, seq_along, is.na, is.nan, any, and all can be
used in nimbleFunctions and compiled using compileNimble.

Usage

nimC(...)

nimRep(x, ...)

nimSeq(from, to, by, length.out)

Arguments

... values to be concatenated.

x vector of values to be replicated (rep), or logical array or vector (which), or
object whose length is wanted (length), or input value (diag), or vector of
values to be tested/checked (is.na, is.nan, any, all).

from starting value of sequence.

to end value of sequence.

by increment of the sequence.

length.out desired length of the sequence.

116 nimbleCode

Details

For c, rep, seq, these functions are NIMBLE’s version of similar R functions, e.g., nimRep for
rep. In a nimbleFunction, either the R name (e.g., rep) or the NIMBLE name (e.g., nimRep) can
be used. If the R name is used, it will be converted to the NIMBLE name. For which, length,
diag, seq_along, is.na, is.nan, any, all simply use the standard name without "nim". These
functions largely mimic (see exceptions below) the behavior of their R counterparts, but they can
be compiled in a nimbleFunction using compileNimble.

nimC is NIMBLE’s version of c and behaves identically.

nimRep is NIMBLE’s version of rep. It should behave identically to rep. There are no NIMBLE
versions of rep.int or rep_len.

nimSeq is NIMBLE’s version of seq. It behaves like seq with support for from, to, by and
length.out arguments. The along.with argument is not supported. There are no NIMBLE ver-
sions of seq.int, seq_along or seq_len, with the exception that seq_along can take a nimble-
FunctionList as an argument to provide the index range of a for-loop (User Manual Ch. 13).

which behaves like the R version but without support for arr.ind or useNames arguments.

diag behaves like the R version but without support for the nrow and ncol arguments.

length behaves like the R version.

seq_along behaves like the R version.

is.na behaves like the R version but does not correctly handle NA values from R that are type
’logical’, so convert these using as.numeric() before passing from R to NIMBLE.

is.nan behaves like the R version, but treats NA of type ’double’ as being NaN and NA of type
’logical’ as not being NaN.

any behaves like the R version but takes only one argument and treats NAs as FALSE.

all behaves like the R version but takes only one argument and treats NAs as FALSE.

nimbleCode Turn BUGS model code into an object for use in nimbleModel or
readBUGSmodel

Description

Simply keeps model code as an R call object, the form needed by nimbleModel and optionally
usable by readBUGSmodel.

Usage

nimbleCode(code)

Arguments

code expression providing the code for the model

https://r-nimble.org/html_manual/cha-welcome-nimble.html

nimbleExternalCall 117

Details

It is equivalent to use the R function quote. nimbleCode is simply provided as a more readable
alternative for NIMBLE users not familiar with quote.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})

nimbleExternalCall Create a nimbleFunction that wraps a call to external compiled code

Description

Given C header information, a function that takes scalars or pointers can be called from a compiled
nimbleFunction. If non-scalar return values are needed, an argument can be selected to behave as
the return value in nimble.

Usage

nimbleExternalCall(
prototype,
returnType,
Cfun,
headerFile,
oFile,
where = getNimbleFunctionEnvironment()

)

Arguments

prototype Argument type information. This can be provided as an R function using nimbleFunction
type declarations or as a list of nimbleType objects.

returnType Return object type information. This can be provided similarly to prototype
as either a nimbleFunction type declaration or as a nimbleType object. In the
latter case, the name will be ignored. If there is no return value, this should be
void().

Cfun Name of the external function (character).

headerFile Name (possibly including file path) of the header file where Cfun is declared.

118 nimbleExternalCall

oFile Name (possibly including path) of the .o file where Cfun has been compiled.
Spaces in the path may cause problems.

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

Details

The only argument types allowed in Cfun are double, int, and bool, corresponding to nimbleFunction
types double, integer, and logical, respectively.

If the dimensionality is greater than zero, the arguments in Cfun should be pointers. This means it
will typically be necessary to pass additional integer arguments telling Cfun the size(s) of non-scalar
arguments.

The return argument can only be a scalar or void. Since non-scalar arguments are passed by pointer,
you can use an argument to return results from Cfun. If you wish to have a nimbleFunction that
uses one argument of Cfun as a return object, you can wrap the result of nimbleExternalCall
in another nimbleFunction that allocates the return object. This is useful for using Cfun in a
nimbleModel. See example below.

Note that a nimbleExternalCall can only be executed in a compiled nimbleFunction, not an
uncompiled one.

If you have problems with spaces in file paths (e.g. for oFile), try compiling everything locally by
including dirName = "." as an argument to compileNimble.

Note that if you use Rcpp to generate object files, NIMBLE’s use of the --preclean option to R CMD
SHLIB can cause failures, so you may need to run nimbleOptions(precleanCompilation=FALSE)
to prevent removal of needed object files.

Value

A nimbleFunction that takes the indicated input arguments, calls Cfun, and returns the result.

Author(s)

Perry de Valpine

See Also

nimbleRcall for calling arbitrary R code from compiled nimbleFunctions.

Examples

Not run:
sink('add1.h')
cat('
extern "C" {
void my_internal_function(double *p, double*ans, int n);
}
')

nimbleFunction 119

sink()
sink('add1.cpp')
cat('
#include <cstdio>
#include "add1.h"
void my_internal_function(double *p, double *ans, int n) {
printf("In my_internal_function\\n");

/* cat reduces the double slash to single slash */
for(int i = 0; i < n; i++)

ans[i] = p[i] + 1.0;
}

')
sink()
system('g++ add1.cpp -c -o add1.o')
Radd1 <- nimbleExternalCall(function(x = double(1), ans = double(1),
n = integer()){}, Cfun = 'my_internal_function',
headerFile = file.path(getwd(), 'add1.h'), returnType = void(),
oFile = file.path(getwd(), 'add1.o'))
If you need to use a function with non-scalar return object in model code,
you can wrap it in another nimbleFunction like this:
model_add1 <- nimbleFunction(

run = function(x = double(1)) {
ans <- numeric(length(x))
Radd1(x, ans, length(x))
return(ans)
returnType(double(1))

})
demoCode <- nimbleCode({

for(i in 1:4) {x[i] ~ dnorm(0,1)} ## just to get a vector
y[1:4] <- model_add1(x[1:4])

})
demoModel <- nimbleModel(demoCode, inits = list(x = rnorm(4)),
check = FALSE, calculate = FALSE)
CdemoModel <- compileNimble(demoModel, showCompilerOutput = TRUE)

End(Not run)

nimbleFunction create a nimbleFunction

Description

create a nimbleFunction from a setup function, run function, possibly other methods, and possibly
inheritance via contains

Usage

nimbleFunction(
setup = NULL,
run = function() {

120 nimbleFunction

},
methods = list(),
globalSetup = NULL,
contains = NULL,
buildDerivs = list(),
name = NA,
check = getNimbleOption("checkNimbleFunction"),
where = getNimbleFunctionEnvironment()

)

Arguments

setup An optional R function definition for setup processing.

run An optional NIMBLE function definition that executes the primary job of the
nimbleFunction

methods An optional named list of NIMBLE function definitions for other class methods.

globalSetup For internal use only

contains An optional object returned from nimbleFunctionVirtual that defines argu-
ments and returnTypes for run and/or methods, to which the current nimble-
Function must conform

buildDerivs A list of names of function methods for which to build derivatives capabilities.

name An optional name used internally, for example in generated C++ code. Usually
this is left blank and NIMBLE provides a name.

check Boolean indicating whether to check the run code for function calls that NIM-
BLE cannot compile. Checking can be turned off for all calls to nimbleFunction
using nimbleOptions(checkNimbleFunction = FALSE).

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

Details

This is the main function for defining nimbleFunctions. A lot of information is provided in the
NIMBLE User Manual, so only a brief summary will be given here.

If a setup function is provided, then nimbleFunction returns a generator: a function that when
called with arguments for the setup function will execute that function and return a specialized
nimbleFunction. The run and other methods can be called using $ like in other R classes, e.g.
nf$run(). The methods can use objects that were created in or passed to the setup function.

If no setup function is provided, then nimbleFunction returns a function that executes the run
function. It is not a generator in this case, and no other methods can be provided.

If one wants a generator but does not need any setup arguments or code, setup = TRUE can be used.

See the NIMBLE User Manual for examples.

For more information about the contains argument, see the section on nimbleFunctionLists.

https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/html_manual/cha-welcome-nimble.html

nimbleFunctionBase-class 121

Author(s)

NIMBLE development team

nimbleFunctionBase-class

Class nimbleFunctionBase

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

nimbleFunctionList-class

Create a list of nimbleFunctions

Description

Create an empty list of nimbleFunctions that all will inherit from a base class.

Details

See the User Manual for information about creating and populating a nimbleFunctionList.

Author(s)

NIMBLE development team

nimbleFunctionVirtual create a virtual nimbleFunction, a base class for other nimbleFunc-
tions

Description

define argument types and returnType for the run function and any methods, to be used in the
contains argument of nimbleFunction

Usage

nimbleFunctionVirtual(
contains = NULL,
run = function() {
},
methods = list(),
name = NA,
methodControl = list()

)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

122 nimbleList

Arguments

contains Not yet functional

run A NIMBLE function that will only be used to inspect its argument types and
returnType.

methods An optional named list of NIMBLE functions that will also only be used for
inspecting argument types and returnTypes.

name An optional name used internally by the NIMBLE compiler. This is usually
omitted and NIMBLE provides one.

methodControl An optional list that allows specification of methods with defaults.

Details

See the NIMBLE User Manual section on nimbleFunctionLists for explanation of how to use a
virtual nimbleFunction.

Value

An object that can be passed as the contains argument to nimbleFunction or as the argument to
nimbleFunctionList

Author(s)

NIMBLE development team

See Also

nimbleFunction

nimbleList create a nimbleList

Description

create a nimbleList from a nimbleList definition

Usage

nimbleList(
...,
name = as.character(NA),
predefined = FALSE,
where = getNimbleFunctionEnvironment()

)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

nimbleMCMC 123

Arguments

... arbitrary set of names and types for the elements of the list or a single R list of
type nimbleType.

name optional character providing a name used internally, for example in generated
C++ code. Usually this is left blank and NIMBLE provides a name.

predefined logical for internal use only.

where optional argument passed to setRefClass for where the reference class defini-
tion generated for this nimbleFunction will be stored. This is needed due to R
package namespace issues but should never need to be provided by a user.

Details

This function creates a definition for a nimbleList. The types argument defines the names, types,
and dimensions of the elements of the nimbleList. Elements of nimbleLists can be either basic types
(e.g., integer, double) or other nimbleList definitions. The types argument can be either a series
of expressions of the form name = type(dim), or a list of nimbleType objects.

nimbleList returns a definition, which can be used to create instances of this type of nimbleList
via the new() member function.

Definitions can be created in R’s general environment or in nimbleFunction setup code. Instances
can be created using the new() function in R’s global environment, in nimbleFunction setup code,
or in nimbleFunction run code.

Instances of nimbleList definitions can be used as arguments to run code of nimbleFunctions, and
as the return type of nimbleFunctions.

Author(s)

NIMBLE development team

Examples

exampleNimListDef <- nimbleList(x = integer(0), Y = double(2))

nimbleListTypes <- list(nimbleType(name = 'x', type = 'integer', dim = 0),
nimbleType(name = 'Y', type = 'double', dim = 2))

this nimbleList definition is identical to the one created above
exampleNimListDef <- nimbleList(nimbleListTypes)

nimbleMCMC Executes one or more chains of NIMBLE’s default MCMC algorithm,
for a model specified using BUGS code

124 nimbleMCMC

Description

nimbleMCMC is designed as the most straight forward entry point to using NIMBLE’s default MCMC
algorithm. It provides capability for running multiple MCMC chains, specifying the number of
MCMC iterations, thinning, and burn-in, and which model variables should be monitored. It also
provides options to return the posterior samples, to return summary statistics calculated from the
posterior samples, and to return a WAIC value.

Usage

nimbleMCMC(
code,
constants = list(),
data = list(),
inits,
dimensions = list(),
model,
monitors,
thin = 1,
niter = 10000,
nburnin = 0,
nchains = 1,
check = TRUE,
setSeed = FALSE,
progressBar = getNimbleOption("MCMCprogressBar"),
samples = TRUE,
samplesAsCodaMCMC = FALSE,
summary = FALSE,
WAIC = FALSE

)

Arguments

code The quoted code expression representing the model, such as the return value
from a call to nimbleCode). Not required if model is provided.

constants Named list of constants in the model. Constants cannot be subsequently modi-
fied. For compatibility with JAGS and BUGS, one can include data values with
constants and nimbleModel will automatically distinguish them based on what
appears on the left-hand side of expressions in code.

data Named list of values for the data nodes. Values that are NA will not be flagged
as data.

inits Argument to specify initial values for each MCMC chain. See details.

dimensions Named list of dimensions for variables. Only needed for variables used with
empty indices in model code that are not provided in constants or data.

model A compiled or uncompiled NIMBLE model object. When provided, this model
will be used to configure the MCMC algorithm to be executed, rather than using
the code, constants, data and inits arguments to create a new model object.

nimbleMCMC 125

However, if also provided, the inits argument will still be used to initialize this
model prior to running each MCMC chain.

monitors A character vector giving the node names or variable names to monitor. The
samples corresponding to these nodes will returned, and/or will have summary
statistics calculated. Default value is all top-level stochastic nodes of the model.

thin Thinning interval for collecting MCMC samples. Thinning occurs after the ini-
tial nburnin samples are discarded. Default value is 1.

niter Number of MCMC iterations to run. Default value is 10000.

nburnin Number of initial, pre-thinning, MCMC iterations to discard. Default value is 0.

nchains Number of MCMC chains to run. Default value is 1.

check Logical argument, specifying whether to check the model object for missing or
invalid values. Default value is TRUE.

setSeed Logical or numeric argument. If a single numeric value is provided, R’s random
number seed will be set to this value at the onset of each MCMC chain. If a
numeric vector of length nchains is provided, then each element of this vector
is provided as R’s random number seed at the onset of the corresponding MCMC
chain. Otherwise, in the case of a logical value, if TRUE, then R’s random number
seed for the ith chain is set to be i, at the onset of each MCMC chain. Note that
specifying the argument setSeed = 0 does not prevent setting the RNG seed,
but rather sets the random number generation seed to 0 at the beginning of each
MCMC chain. Default value is FALSE.

progressBar Logical argument. If TRUE, an MCMC progress bar is displayed during exe-
cution of each MCMC chain. Default value is defined by the nimble package
option MCMCprogressBar..

samples Logical argument. If TRUE, then posterior samples are returned from each MCMC
chain. These samples are optionally returned as coda mcmc objects, depending
on the samplesAsCodaMCMC argument. Default value is TRUE. See details.

samplesAsCodaMCMC

Logical argument. If TRUE, then a coda mcmc object is returned instead of an R
matrix of samples, or when nchains > 1 a coda mcmc.list object is returned
containing nchains mcmc objects. This argument is only used when samples is
TRUE. Default value is FALSE. See details.

summary Logical argument. When TRUE, summary statistics for the posterior samples of
each parameter are also returned, for each MCMC chain. This may be returned
in addition to the posterior samples themselves. Default value is FALSE. See
details. z

WAIC Logical argument. When TRUE, the WAIC (Watanabe, 2010) of the model is
calculated and returned. If multiple chains are run, then a single WAIC value is
calculated using the posterior samples from all chains. Default value is FALSE.
Note that the version of WAIC used is the default WAIC conditional on random
effects/latent states and without any grouping of data nodes. See help(waic) for
more details. If a different version of WAIC is desired, do not use nimbleMCMC.
Instead, specify the controlWAIC argument to configureMCMC or buildMCMC,
and then use runMCMC.

126 nimbleMCMC

Details

The entry point for this function is providing the code, constants, data and inits arguments, to
create a new NIMBLE model object, or alternatively providing an exisiting NIMBLE model object
as the model argument.

At least one of samples, summary or WAIC must be TRUE, since otherwise, nothing will be returned.
Any combination of these may be TRUE, including possibly all three, in which case posterior sam-
ples, summary statistics, and WAIC values are returned for each MCMC chain.

When samples = TRUE, the form of the posterior samples is determined by the samplesAsCodaMCMC
argument, as either matrices of posterior samples, or coda mcmc and mcmc.list objects.

Posterior summary statistics are returned individually for each chain, and also as calculated from
all chains combined (when nchains > 1).

The inits argument can be one of three things:

(1) a function to generate initial values, which will be executed once to initialize the model object,
and once to generate initial values at the beginning of each MCMC chain, or (2) a single named list
of initial values which, will be used to initialize the model object and for each MCMC chain, or (3)
a list of length nchains, each element being a named list of initial values. The first element will be
used to initialize the model object, and once element of the list will be used for each MCMC chain.

The inits argument may also be omitted, in which case the model will not be provided with initial
values. This is not recommended.

The niter argument specifies the number of pre-thinning MCMC iterations, and the nburnin ar-
gument specifies the number of pre-thinning MCMC samples to discard. After discarding these
burn-in samples, thinning of the remaining samples will take place. The total number of posterior
samples returned will be floor((niter-nburnin)/thin).

Value

A list is returned with named elements depending on the arguments passed to nimbleMCMC, unless
only one among samples, summary, and WAIC are requested, in which case only that element is
returned. These elements may include samples, summary, and WAIC. When nchains = 1, posterior
samples are returned as a single matrix, and summary statistics as a single matrix. When nchains
> 1, posterior samples are returned as a list of matrices, one matrix for each chain, and summary
statistics are returned as a list containing nchains+1 matrices: one matrix corresponding to each
chain, and the final element providing a summary of all chains, combined. If samplesAsCodaMCMC
is TRUE, then posterior samples are provided as coda mcmc and mcmc.list objects. When WAIC is
TRUE, a WAIC summary object is returned.

Author(s)

Daniel Turek

See Also

configureMCMC buildMCMC runMCMC

nimbleModel 127

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10) {

x[i] ~ dnorm(mu, sd = sigma)
}

})
data <- list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3))
inits <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))
mcmc.output <- nimbleMCMC(code, data = data, inits = inits,

monitors = c("mu", "sigma"), thin = 10,
niter = 20000, nburnin = 1000, nchains = 3,
summary = TRUE, WAIC = TRUE)

End(Not run)

nimbleModel Create a NIMBLE model from BUGS code

Description

Processes BUGS model code and optional constants, data, and initial values. Returns a NIMBLE
model (see modelBaseClass) or model definition.

Usage

nimbleModel(
code,
constants = list(),
data = list(),
inits = list(),
dimensions = list(),
returnDef = FALSE,
where = globalenv(),
debug = FALSE,
check = getNimbleOption("checkModel"),
calculate = TRUE,
name = NULL,
buildDerivs = getNimbleOption("buildModelDerivs"),
userEnv = parent.frame()

)

128 nimbleModel

Arguments

code code for the model in the form returned by nimbleCode or (equivalently) quote

constants named list of constants in the model. Constants cannot be subsequently modi-
fied. For compatibility with JAGS and BUGS, one can include data values with
constants and nimbleModel will automatically distinguish them based on what
appears on the left-hand side of expressions in code.

data named list of values for the data nodes. Data values can be subsequently mod-
ified. Providing this argument also flags nodes as having data for purposes of
algorithms that inspect model structure. Values that are NA will not be flagged
as data.

inits named list of starting values for model variables. Unlike JAGS, should only be
a single list, not a list of lists.

dimensions named list of dimensions for variables. Only needed for variables used with
empty indices in model code that are not provided in constants or data.

returnDef logical indicating whether the model should be returned (FALSE) or just the
model definition (TRUE).

where argument passed to setRefClass, indicating the environment in which the ref-
erence class definitions generated for the model and its modelValues should be
created. This is needed for managing package namespace issues during package
loading and does not normally need to be provided by a user.

debug logical indicating whether to put the user in a browser for debugging. Intended
for developer use.

check logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’. See nimbleOptions
for details.

calculate logical indicating whether to run calculate on the model after building it; this
will calculate all deterministic nodes and logProbability values given the current
state of all nodes. Default is TRUE. For large models, one might want to disable
this, but note that deterministic nodes, including nodes introduced into the model
by NIMBLE, may be NA.

name optional character vector giving a name of the model for internal use. If omitted,
a name will be provided.

buildDerivs logical indicating whether to build derivative capabilities for the model.

userEnv environment in which if-then-else statements in BUGS code will be evaluated if
needed information not found in constants; intended primarily for internal use
only

Details

See the User Manual or help(modelBaseClass) for information about manipulating NIMBLE
models created by nimbleModel, including methods that operate on models, such as getDependencies.

The user may need to provide dimensions for certain variables as in some cases NIMBLE cannot
automatically determine the dimensions and sizes of variables. See the User Manual for more
information.

https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/html_manual/cha-welcome-nimble.html

nimbleOptions 129

As noted above, one may lump together constants and data (as part of the constants argument
(unlike R interfaces to JAGS and BUGS where they are provided as the data argument). One may
not provide lumped constants and data as the data argument.

For variables that are a mixture of data nodes and non-data nodes, any values passed in via inits
for components of the variable that are data will be ignored. All data values should be passed in
through data (or constants as just discussed).

Author(s)

NIMBLE development team

See Also

readBUGSmodel for creating models from BUGS-format model files

Examples

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})
constants = list(prior_sd = 1)
data = list(x = 4)
Rmodel <- nimbleModel(code, constants = constants, data = data)

nimbleOptions NIMBLE Options Settings

Description

Allow the user to set and examine a variety of global _options_ that affect the way in which NIM-
BLE operates. Call nimbleOptions() with no arguments to see a list of available opions.

Usage

nimbleOptions(...)

Arguments

... any options to be defined as one or more name = value pairs or as a single list
of name=value pairs.

Details

nimbleOptions mimics options. Invoking nimbleOptions() with no arguments returns a list
with the current values of the options. To access the value of a single option, one should use
getNimbleOption().

130 nimbleRcall

Value

When invoked with no arguments, returns a list with the current values of all options. When invoked
with one or more arguments, returns a list of the the updated options with their updated values.

Author(s)

Christopher Paciorek

Examples

Set one option:
nimbleOptions(verifyConjugatePosteriors = FALSE)

Compactly print all options:
str(nimbleOptions(), max.level = 1)

Save-and-restore options:
old <- nimbleOptions() # Saves old options.
nimbleOptions(showCompilerOutput = TRUE,

verboseErrors = TRUE) # Sets temporary options.
...do stuff...
nimbleOptions(old) # Restores old options.

nimbleRcall Make an R function callable from compiled nimbleFunctions (includ-
ing nimbleModels).

Description

Normally compiled nimbleFunctions call other compiled nimbleFunctions. nimbleRcall enables
any R function (with viable argument types and return values) to be called (and evaluated in R)
from compiled nimbleFunctions.

Usage

nimbleRcall(
prototype,
returnType,
Rfun,
where = getNimbleFunctionEnvironment()

)

Arguments

prototype Argument type information for Rfun. This can be provided as an R function
using nimbleFunction type declarations or as a list of nimbleType objects.

nimbleRcall 131

returnType Return object type information. This can be provided similarly to prototype
as either a nimbleFunction type declaration or as a nimbleType object. In the
latter case, the name will be ignored. If there is no return value this should be
void().

Rfun The name of an R function to be called from compiled nimbleFunctions.

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

Details

The nimbleFunction returned by nimbleRcall can be used in other nimbleFunctions. When
called from a compiled nimbleFunction (including from a model), arguments will be copied ac-
cording to the declared types, the function named by Rfun will be called, and the returned object will
be copied if necessary. The example below shows use of an R function in a compiled nimbleModel.

A nimbleFunction returned by nimbleRcall can only be used in a compiled nimbleFunction.
Rfun itself should work in an uncompiled nimbleFunction.

Value

A nimbleFunction that wraps a call to Rfun with type-declared arguments and return object.

Author(s)

Perry de Valpine

See Also

nimbleExternalCall for calling externally provided C (or other) compiled code.

Examples

Not run:
Say we want an R function that adds 2 to every value in a vector
add2 <- function(x) {

x + 2
}
Radd2 <- nimbleRcall(function(x = double(1)){}, Rfun = 'add2',
returnType = double(1))
demoCode <- nimbleCode({

for(i in 1:4) {x[i] ~ dnorm(0,1)}
z[1:4] <- Radd2(x[1:4])

})
demoModel <- nimbleModel(demoCode, inits = list(x = rnorm(4)),
check = FALSE, calculate = FALSE)
CdemoModel <- compileNimble(demoModel)

End(Not run)

132 nimCat

nimbleType-class create a nimbleType object

Description

Create a nimbleType object, with information on the name, type, and dimension of an object to be
placed in a nimbleList.

Arguments

name The name of the object, given as a character string.

type The type of the object, given as a character string.

dim The dimension of the object, given as an integer. This can be left blank if the
object is a nimbleList.

Details

This function creates nimbleType objects, which can be used to define the elements of a nimbleList.

The type argument can be chosen from among character, double, integer, and logical, or can
be the name of a previously created nimbleList definition.

See the NIMBLE User Manual for additional examples.

Author(s)

NIMBLE development team

Examples

nimbleTypeList <- list()
nimbleTypeList[[1]] <- nimbleType(name = 'x', type = 'integer', dim = 0)
nimbleTypeList[[2]] <- nimbleType(name = 'Y', type = 'double', dim = 2)

nimCat cat function for use in nimbleFunctions

Description

cat function for use in nimbleFunctions

Usage

nimCat(...)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

nimCopy 133

Arguments

... an arbitrary set of arguments that will be printed in sequence.

Details

cat in nimbleFunction run-code imitates the R function cat. It prints its arguments in order. No
newline is inserted, so include "\n" if one is desired.

When an uncompiled nimbleFunction is executed, R’s cat is used. In a compiled nimbleFunction,
a C++ output stream is used that will generally format output similarly to R’s cat. Non-scalar
numeric objects can be included, although their output will be formatted slightly different in un-
compiled and compiled nimbleFunctions.

In nimbleFunction run-time code, cat is identical to print except the latter appends a newline at
the end.

nimCat is the same as cat, and the latter is converted to the former when a nimbleFunction is
defined.

For numeric values, the number of digits printed is controlled by the system option nimbleOptions('digits').

See Also

print

Examples

ans <- matrix(1:4, nrow = 2) ## R code, not NIMBLE code
nimCat('Answer is ', ans) ## would work in R or NIMBLE

nimCopy Copying function for NIMBLE

Description

Copies values from a NIMBLE model or modelValues object to another NIMBLE model or mod-
elValues. Work in R and NIMBLE. The NIMBLE keyword copy is identical to nimCopy

Usage

nimCopy(
from,
to,
nodes = NULL,
nodesTo = NULL,
row = NA,
rowTo = NA,
logProb = FALSE,
logProbOnly = FALSE

)

134 nimCopy

Arguments

from Either a NIMBLE model or modelValues object

to Either a NIMBLE model or modelValues object

nodes Vector of one or more node names of object from that will be copied from

nodesTo Vector of one or more node names of object to that will be copied to. If nodesTo
is NULL, will automatically be set to nodes

row If from is a modelValues, the row that will be copied from

rowTo If to is a modelValues, the row which will be copied to. If rowTo is NA, will
automatically be set to row

logProb A logical value indicating whether the log probabilities of the given nodes should
also be copied (i.e. if nodes = 'x' and logProb = TRUE, then both 'x' and
'logProb_x' will be copied)

logProbOnly A logical value indicating whether only the log probabilities of the given nodes
should be copied (i.e. if nodes = 'x' and logProbOnly = TRUE, then only 'logProb_x'
will be copied)

Details

This function copies values from one or more nodes (possibly including log probabilities for nodes)
between models and modelValues objects. For modelValues objects, the row must be specified.
This function allows one to conveniently copy multiple nodes, avoiding having to write a loop.

Author(s)

Clifford Anderson-Bergman

Examples

Building model and modelValues object
simpleModelCode <- nimbleCode({
for(i in 1:100)
x[i] ~ dnorm(0,1)

})
rModel <- nimbleModel(simpleModelCode)
rModelValues <- modelValues(rModel)

#Setting model nodes
rModel$x <- rnorm(100)
#Using nimCopy in R.
nimCopy(from = rModel, to = rModelValues, nodes = 'x', rowTo = 1)

#Use of nimCopy in a simple nimbleFunction
cCopyGen <- nimbleFunction(
setup = function(model, modelValues, nodeNames){},
run = function(){
nimCopy(from = model, to = modelValues, nodes = nodeNames, rowTo = 1)
}

)

nimDerivs 135

rCopy <- cCopyGen(rModel, rModelValues, 'x')
Not run:
cModel <- compileNimble(rModel)
cCopy <- compileNimble(rCopy, project = rModel)
cModel[['x']] <- rnorm(100)

cCopy$run() ## execute the copy with the compiled function

End(Not run)

nimDerivs Nimble Derivatives

Description

Computes the value, 1st order (Jacobian), and 2nd order (Hessian) derivatives of a given nimbleFunction
method and/or model log probabilities

Usage

nimDerivs(call = NA, wrt = NULL, order = nimC(0, 1, 2), model = NA, ...)

Arguments

call a call to a nimbleFunction method with arguments included. Can also be a call
to model$calculate(nodes), or to calculate(model, nodes).

wrt a character vector of either: names of function arguments (if taking deriva-
tives of a nimbleFunction method), or node names (if taking derivatives of
model$calculate(nodes)) to take derivatives with respect to. If left empty,
derivatives will be taken with respect to all arguments to nimFxn.

order an integer vector with values within the set 0, 1, 2, corresponding to whether the
function value, Jacobian, and Hessian should be returned respectively. Defaults
to c(0, 1, 2).

model (optional) for derivatives of a nimbleFunction that involves model. calculations,
the uncompiled model that is used. This is needed in order to be able to correctly
restore values into the model when order does not include 0 (or in all cases
when double-taping).

... additional arguments intended for internal use only.

Details

Derivatives for uncompiled nimbleFunctions are calculated using the numDeriv package. If this
package is not installed, an error will be issued. Derivatives for matrix valued arguments will be
returned in column-major order.

136 nimDim

Value

an ADNimbleList with elements value, jacobian, and hessian.

Examples

Not run:
model <- nimbleModel(code = ...)
calcDerivs <- nimDerivs(model$calculate(model$getDependencies('x')),
wrt = 'x')

End(Not run)

nimDim return sizes of an object whether it is a vector, matrix or array

Description

R’s regular dim function returns NULL for a vector. It is useful to have this function that treats a
vector similarly to a matrix or array. Works in R and NIMBLE. In NIMBLE dim is identical to
nimDim, not to R’s dim

Usage

nimDim(obj)

Arguments

obj objects for which the sizes are requested

Value

a vector of sizes in each dimension

Author(s)

NIMBLE development team

Examples

x <- rnorm(4)
dim(x)
nimDim(x)
y <- matrix(x, nrow = 2)
dim(y)
nimDim(y)

nimEigen 137

nimEigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of a numeric matrix.

Usage

nimEigen(x, symmetric = FALSE, only.values = FALSE)

Arguments

x a numeric matrix (double or integer) whose spectral decomposition is to be com-
puted.

symmetric if TRUE, the matrix is guarranteed to be symmetric, and only its lower triangle
(diagonal included) is used. Otherwise, the matrix is checked for symmetry.
Default is FALSE.

only.values if TRUE, only the eigenvalues are computed, otherwise both eigenvalues and
eigenvectors are computed. Setting only.values = TRUE can speed up eigen-
decompositions, especially for large matrices. Default is FALSE.

Details

Computes the spectral decomposition of a numeric matrix using the Eigen C++ template library. In
a nimbleFunction, eigen is identical to nimEigen. If the matrix is symmetric, a faster and more
accurate algorithm will be used to compute the eigendecomposition. Note that non-symmetric ma-
trices can have complex eigenvalues, which are not supported by NIMBLE. If a complex eigenvalue
or a complex element of an eigenvector is detected, a warning will be issued and that element will
be returned as NaN.

Additionally, returnType(eigenNimbleList()) can be used within a link{nimbleFunction} to
specify that the function will return a nimbleList generated by the nimEigen function. eigenNimbleList()
can also be used to define a nested nimbleList element. See the User Manual for usage examples.

Value

The spectral decomposition of x is returned as a nimbleList with elements:

• values vector containing the eigenvalues of x, sorted in decreasing order. Since x is required
to be symmetric, all eigenvalues will be real numbers.

• vectors. matrix with columns containing the eigenvectors of x, or an empty matrix if only.values
is TRUE.

Author(s)

NIMBLE development team

https://r-nimble.org/html_manual/cha-welcome-nimble.html

138 nimIntegrate

See Also

nimSvd for singular value decompositions in NIMBLE.

Examples

eigenvaluesDemoFunction <- nimbleFunction(
setup = function(){

demoMatrix <- diag(4) + 2
},
run = function(){

eigenvalues <- eigen(demoMatrix, symmetric = TRUE)$values
returnType(double(1))
return(eigenvalues)

})

nimIntegrate Integration of One-Dimensional Functions

Description

NIMBLE wrapper around R’s builtin integrate. Adaptive quadrature of functions of one variable
over a finite or infinite interval.

Usage

nimIntegrate(
f,
lower,
upper,
param,
subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25,
abs.tol = .Machine$double.eps^0.25,
stop.on.error = TRUE

)

Arguments

f nimbleFunction of one input for which the integral is desired. See below for
details on requirements for how f must be defined.

lower an optional scalar lower bound for the input of the function.

upper an optional scalar upper bound for the input of the function.

param additional parameter(s) to the function that are fixed with respect to the inte-
gration. If f takes no additional arguments (beyond the variable of integration),
this must be provided but need not be used in f. Can be of length one or more.
parameters.

nimIntegrate 139

subdivisions the maximum number of subintervals.

rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.

stop.on.error logical. If TRUE (the default) an error stops the function. Otherwise some errors
will give a result with the error code given in the third element of the result
vector.

Details

The function f should take two arguments, the first of type double(1), i.e., vector. f should be vec-
torized in that it should also return a double(1) object, containing the result of applying the func-
tion to each element of the first argument. (The result can be calculated using vectorized NIMBLE
code or using a loop.) The second argument is required to also be of type double(1), containing
any additional parameter(s) to the function that are not being integrated over. This argument can be
unused in the function if the function does not need additional parameters. Note that this must be of
type double(1) even if param contains a single element (NIMBLE will manage the lengths behind
the scenes).

Note that unlike with R’s integrate, additional parameters must be passed as part of a vector,
specified via param, and cannot be passed as individual named arguments.

Value

A vector with three values, the first the estimate of the integral, the second an estimate of the
modulus of the absolute error, and the third a result code corresponding to the message returned by
integrate. The numerical result code can be interpreted as follows:

• 0: "OK"

• 1: "maximum number of subdivisions reached"

• 2: "roundoff error was detected"

• 3: "extremely bad integrand behaviour"

• 4: "roundoff error is detected in the extrapolation table"

• 5: "the integral is probably divergent"

• 6: "the input is invalid"

Author(s)

Christopher Paciorek, Paul van Dam-Bates, Perry de Valpine

See Also

integrate

140 nimMatrix

Examples

integrand <- nimbleFunction(
run = function(x = double(1), theta = double(1)) {

return(x*theta[1])
returnType(double(1))

}
)

fun <- nimbleFunction(
run = function(theta = double(0), lower = double(0), upper = double(0)) {

param = c(theta, 0) # cannot be scalar, so pad with zero.
output = integrate(integrand, lower, upper, param)
returnType(double(1))
return(output)

})

fun(3.1415927, 0, 1)
Not run:
cfun <- compileNimble(fun)
cfun(3.1415927, 0, 1)

End(Not run)

nimMatrix Creates matrix or array objects for use in nimbleFunctions

Description

In a nimbleFunction, matrix and array are identical to nimMatrix and nimArray, respectively

Usage

nimMatrix(
value = 0,
nrow = NA,
ncol = NA,
init = TRUE,
fillZeros = TRUE,
recycle = TRUE,
type = "double"

)

nimArray(
value = 0,
dim = c(1, 1),
init = TRUE,
fillZeros = TRUE,

nimMatrix 141

recycle = TRUE,
nDim,
type = "double"

)

Arguments

value value(s) for initialization (default = 0). This can be a vector, matrix or array, but
it will be used as a vector.

nrow the number of rows in a matrix (default = 1)

ncol the number of columns in a matrix (default = 1)

init logical, whether to initialize values (default = TRUE)

fillZeros logical, whether to initialize any elements not filled by (possibly recycled) value
with 0 (or FALSE for nimLogical) (default = TRUE)

recycle logical, whether value should be recycled to fill the entire contents of the new
object (default = TRUE)

type character representing the data type, i.e. 'double', 'integer', or 'logical'
(default = 'double')

dim vector of dimension sizes in an array (default = c(1, 1))

nDim number of dimensions in an array. This is only necessary for compileNimble if
the length of dim cannot be determined during compilation.

Details

These functions are similar to R’s matrix and array functions, but they can be used in a nim-
bleFunction and compiled using compileNimble. Largely for compilation purposes, finer control
is provided over initialization behavior, similarly to nimNumeric, nimInteger, and nimLogical.
If init = FALSE, no initialization will be done, and value, fillZeros and recycle will be ig-
nored. If init=TRUE and recycle=TRUE, then fillZeros will be ignored, and value will be re-
peated (according to R’s recycling rule) as much as necessary to fill the object. If init=TRUE and
recycle=FALSE, then if fillZeros=TRUE, values of 0 (or FALSE for nimLogical) will be filled in
after value. Compiled code will be more efficient if unnecessary initialization is not done, but this
may or may not be noticeable depending on the situation.

When used in a nimbleFunction (in run or other member function), matrix and array are imme-
diately converted to nimMatrix and nimArray, respectively.

The nDim argument is only necessary for a use like dim <- c(2, 3, 4); A <- nimArray(0, dim =
dim, nDim = 3). It is necessary because the NIMBLE compiler must determine during compilation
that A will be a 3-dimensional numeric array. However, the compiler doesn’t know for sure what the
length of dim will be at run time, only that it is a vector. On the other hand, A <- nimArray(0, dim
= c(2, 3, 4)) is allowed because the compiler can directly determine that a vector of length three
is constructed inline for the dim argument.

Author(s)

Daniel Turek and Perry de Valpine

142 nimNumeric

See Also

nimNumeric nimInteger nimLogical

nimNumeric Creates numeric, integer or logical vectors for use in nimbleFunctions

Description

In a nimbleFunction, numeric, integer and logical are identical to nimNumeric, nimInteger
and nimLogical, respectively.

Usage

nimNumeric(
length = 0,
value = 0,
init = TRUE,
fillZeros = TRUE,
recycle = TRUE

)

nimInteger(
length = 0,
value = 0,
init = TRUE,
fillZeros = TRUE,
recycle = TRUE

)

nimLogical(
length = 0,
value = 0,
init = TRUE,
fillZeros = TRUE,
recycle = TRUE

)

Arguments

length the length of the vector (default = 0)
value value(s) for initializing the vector (default = 0). This may be a vector, matrix or

array but will be used as a vector.
init logical, whether to initialize elements of the vector (default = TRUE)
fillZeros logical, whether to initialize any elements not filled by (possibly recycled) value

with 0 (or FALSE for nimLogical) (default = TRUE)
recycle logical, whether value should be recycled to fill the entire length of the new

vector (default = TRUE)

nimOptim 143

Details

These functions are similar to R’s numeric, integer, logical functions, but they can be used in a
nimbleFunction and then compiled using compileNimble. Largely for compilation purposes, finer
control is provided over initialization behavior. If init = FALSE, no initialization will be done, and
value, fillZeros and recycle will be ignored. If init=TRUE and recycle=TRUE, then fillZeros
will be ignored, and value will be repeated (according to R’s recycling rule) as much as necessary
to fill a vector of length length. If init=TRUE and recycle=FALSE, then if fillZeros=TRUE,
values of 0 (or FALSE for nimLogical) will be filled in after value up to length length. Compiled
code will be more efficient if unnecessary initialization is not done, but this may or may not be
noticeable depending on the situation.

When used in a nimbleFunction (in run or other member function), numeric, integer and
logical are immediately converted to nimNumeric, nimInteger and nimLogical, respectively.

Author(s)

Daniel Turek, Christopher Paciorek, Perry de Valpine

See Also

nimMatrix, nimArray

nimOptim General-purpose Optimization

Description

NIMBLE wrapper around R’s builtin optim, with flexibility for additional methods.

Usage

nimOptim(
par,
fn,
gr = "NULL",
he = "NULL",
...,
method = "Nelder-Mead",
lower = -Inf,
upper = Inf,
control = nimOptimDefaultControl(),
hessian = FALSE

)

144 nimOptim

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B" meth-
ods. If not provided, a finite-difference approximation to derivatives will be
used.

he A function to return the Hessian matrix of second derivatives. Used (but not
required) in "nlminb" or (optionally) user-provided methods.

... IGNORED

method The method to be used. See ‘Details‘ section of optim. One of: "Nelder-Mead",
"BFGS", "CG", "L-BFGS-B", "nlminb", or "bobyqa". Note that the R methods
"SANN", "Brent" are not supported. It is also possible to provide a new method;
see details.

lower Vector or scalar of lower bounds for parameters.

upper Vector or scalar of upper bounds for parameters.

control A list of control parameters. See Details section of optim. For code in a
nimbleFunction to be compiled, this must be an optimControlNimbleList,
which has fields for most elements in the control list for R’s optim.

hessian Logical. Should a Hessian matrix be returned?

Details

This function for use in nimbleFunctions for compilation by compileNimble provides capabili-
ties similar to R’s optim and nlminb. For the supported methods provided by optim, a compiled
nimbleFunction will directly call the C code used by R for these methods.

If optim appears in a nimbleFunction, it will be converted to nimOptim.

Note that if a gradient function (gr) is not provided, optim provides a finite difference approxima-
tion for use by optimization methods that need gradients. nimble’s compiled version of nimOptim
does the same thing, although results might not be completely identical.

For method="nlminb", a compiled nimbleFunction will run R’s nlminb directly in R, with fn,
gr (if provided) and he (if provided) that call back into compiled code. For method="bobyqa", a
compiled nimbleFunction will run R’s nloptr::bobyqa directly in R, with fn that calls back into
compiled code.

An experimental feature is the capability to provide one’s own optimization method in R and
register it for use by nimOptim. One must write a function that takes arguments par, fn, gr,
he, lower, upper, control, and hessian. The function must return a list with elements par,
value, convergence, counts, evaluations, message, and hessian (which may be NULL). If
hessian=TRUE but the function does not return a matrix in the hessian element of its return list,
nimOptim will fill in that element using finite differences of the gradient. In general the function
will be a wrapper around the actual R optimization function.

The control list passed from a nimbleFunction to the optimization function will include a min-
imum of options, including abstol, reltol, maxit, and trace. This means that the user’s R

nimOptim 145

(wrapper) function must map between those minimum options and the equivalent inputs to the opti-
mization function. Other options for a specific method may be set within the R (wrapper) function
but cannot be passed from nimOptim.

The elements parscale and fnscale in control are used in a special way. They are implemented
by nimOptim such that for *any* the method is expected to do minimization and nimOptim will
arrange for it to minimize fn(par)/fnscale in the parameter space par/parscale.

To use the optimizer with nimOptim, an optimizer fun must be registered by nimOptimMethod("method_name",
fun), and then "method_name" can be used as the method argument to nimOptim to use fun. An op-
timizer may be found by nimOptimMethod("method_name") and may be removed by nimOptimMethod("method_name",
NULL).

Support for method="nlminb" is provided in this way, and can be studied as an example via
nimOptimMethod("nlminb").

The system for providing one’s own optimizer is not considered stable and is subject to change in
future versions.

Value

optimResultNimbleList

See Also

optim

Examples

Not run:
objectiveFunction <- nimbleFunction(

run = function(par = double(1)) {
return(sum(par) * exp(-sum(par ^ 2) / 2))
returnType(double(0))

}
)
optimizer <- nimbleFunction(

run = function(method = character(0), fnscale = double(0)) {
control <- optimDefaultControl()
control$fnscale <- fnscale
par <- c(0.1, -0.1)
return(optim(par, objectiveFunction, method = method, control = control))
returnType(optimResultNimbleList())

}
)
cOptimizer <- compileNimble(optimizer)
cOptimizer(method = 'BFGS', fnscale = -1)

End(Not run)

146 nimOptimMethod

nimOptimDefaultControl

Creates a default control argument for nimOptim.

Description

Creates a default control argument for nimOptim.

Usage

nimOptimDefaultControl()

Value

optimControlNimbleList

See Also

nimOptim, optim

nimOptimMethod Set or get an optimization function to be used by nimOptim

Description

Add, check, or remove an R optimization function to/from NIMBLE’s set of registered optimization
functions that can be called from nimOptim.

Usage

nimOptimMethod(name, value)

Arguments

name character string, giving the name of optimization method that can be referred to
by the method argument of nimOptim (aka optim in a nimbleFunction).

value An optimization function with specifications described below and in nimOptim.
If value is NULL, then name will be found in NIMBLE’s set of registered op-
timizer names. If value is missing, the registered optimizer for name will be
returned.

nimPrint 147

Details

When programming in nimbleFunctions, optim, which is converted automatically to nimOptim,
provides a generalization of R’s optim methods for optimization. If one of the supported original
optim methods is not chosen with the method argument to nimOptim, an arbitrary method name
can be given. If that name has been registered as a name by a call to nimOptimMethod, then the
corresponding function (value) will be called for optimization.

The function value must perform minimization. If the call to nimOptim includes a control list
with either fnscale (which, if negative, turns the problem into a maximization) or parscale,
these will be managed by nimOptim outside of the optimizer such that the optimization should
be minimization.

The function value must take named arguments par (initial parameter vector), fn (objective func-
tion), gr (optional gradient function), he (optional Hessian function), lower (vector of lower bounds),
upper (vector of upper bounds), control (arbitrary control list), and hessian (logical indicat-
ing whether a Hessian at the optimum is requested). It must return a list with elements elements
par (parameter values of the optimium, i.e., "arg min"), value (function value at the minimum),
convergence (should be 0 if convergence occurred), counts (optional vector of counts of calls to
fn, gr, and he), evaluations (optional total function evaluations), message (optional character
message), and hessian (optional Hessian matrix, which may be NULL).

If the call to nimOptim has hessian=TRUE, that will be passed as hessian=TRUE to the optimizer.
However, if the optimizer returns a NULL in the hessian element of the return list, then nimOptim
will calculate the Hessian by finite element differences. Hence, an optimizer need not provide a
Hessian capability.

The control list passed from nimOptim to the optimizer will have only a limited set of the optim
control list options. These will include abstol, reltol, maxit, and trace. The optimizer may use
these as it wishes. Other control options for a particular optimizer must be managed in some other
way.

Note that it is possible to use browser() inside of value, or to set debug(value), to enter a browser
when the optimizer (value) is called and then inspect its arguments to make sense of the situation.

This whole feature is particularly helpful when the nimbleFunction using nimOptim has been com-
piled by compileNimble. Many optimizers are available through R, so nimOptim arranges to call
a named (registered) optimizer in R, while providing fn and optionally gr or he as functions that
will call the compiled (by nimble) versions of the corresponding functions provided in the call to
nimOptim.

R’s optimizer nlminb is automatically registered under the name "nlminb".

nimPrint print function for use in nimbleFunctions

Description

print function for use in nimbleFunctions

Usage

nimPrint(...)

148 nimStop

Arguments

... an abitrary set of arguments that will be printed in sequence.

Details

The keyword print in nimbleFunction run-time code will be automatically turned into nimPrint.
This is a function that prints its arguments in order using cat in R, or using std::cout in C++ code
generated by compiling nimbleFunctions. Non-scalar numeric objects can be included, although
their output will be formatted slightly different in uncompiled and compiled nimbleFunctions.

For numeric values, the number of digits printed is controlled by the system option nimbleOptions('digits').

See Also

cat

Examples

ans <- matrix(1:4, nrow = 2) ## R code, not NIMBLE code
nimPrint('Answer is ', ans) ## would work in R or NIMBLE

nimStop Halt execution of a nimbleFunction function method. Part of the NIM-
BLE language

Description

Halt execution of a nimbleFunction function method. Part of the NIMBLE language

Usage

nimStop(msg)

Arguments

msg Character object to be output as an error message

Details

The NIMBLE stop is similar to the native R stop, but it takes only one argument, the error message
to be output. During uncompiled NIMBLE execution, nimStop simply calls R’s stop funtion. Dur-
ing compiled execution it calls the error function from the R headers. stop is an alias for nimStop
in the NIMBLE language

Author(s)

Perry de Valpine

nimSvd 149

nimSvd Singular Value Decomposition of a Matrix

Description

Computes singular values and, optionally, left and right singular vectors of a numeric matrix.

Usage

nimSvd(x, vectors = "full")

Arguments

x a symmetric numeric matrix (double or integer) whose spectral decomposition
is to be computed.

vectors character that determines whether to calculate left and right singular vectors.
Can take values 'none', 'thin' or 'full'. Defaults to 'full'. See ‘Details’.

Details

Computes the singular value decomposition of a numeric matrix using the Eigen C++ template
library.

The vectors character argument determines whether to compute no left and right singular vectors
('none'), thinned left and right singular vectors ('thin'), or full left and right singular vectors
('full'). For a matrix x with dimensions n and p, setting vectors = 'thin' will does the following
(quoted from eigen website): In case of a rectangular n-by-p matrix, letting m be the smaller value
among n and p, there are only m singular vectors; the remaining columns of U and V do not
correspond to actual singular vectors. Asking for thin U or V means asking for only their m first
columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that
thin U and V are all you need for (least squares) solving.

Setting vectors = 'full' will compute full matrices for U and V, so that U will be of size n-by-n,
and V will be of size p-by-p.

In a nimbleFunction, svd is identical to nimSvd.

returnType(svdNimbleList()) can be used within a link{nimbleFunction} to specify that the
function will return a nimbleList generated by the nimSvd function. svdNimbleList() can also
be used to define a nested nimbleList element. See the User Manual for usage examples.

Value

The singular value decomposition of x is returned as a nimbleList with elements:

• d length m vector containing the singular values of x, sorted in decreasing order.

• v matrix with columns containing the left singular vectors of x, or an empty matrix if vectors
= 'none'.

• u matrix with columns containing the right singular vectors of x, or an empty matrix if
vectors = 'none'.

https://r-nimble.org/html_manual/cha-welcome-nimble.html

150 nodeFunctions

Author(s)

NIMBLE development team

See Also

nimEigen for spectral decompositions.

Examples

singularValuesDemoFunction <- nimbleFunction(
setup = function(){

demoMatrix <- diag(4) + 2
},
run = function(){

singularValues <- svd(demoMatrix)$d
returnType(double(1))
return(singularValues)

})

nodeFunctions calculate, calculateDiff, simulate, or get the current log probabilities
(densities) a set of nodes in a NIMBLE model

Description

calculate, calculateDiff, simulate, or get the current log probabilities (densities) of one or more
nodes of a NIMBLE model and (for calculate and getLogProb) return the sum of their log probabil-
ities (or densities). Part of R and NIMBLE.

Usage

calculate(model, nodes, nodeFxnVector, nodeFunctionIndex)

calculateDiff(model, nodes, nodeFxnVector, nodeFunctionIndex)

getLogProb(model, nodes, nodeFxnVector, nodeFunctionIndex)

simulate(model, nodes, includeData = FALSE, nodeFxnVector, nodeFunctionIndex)

Arguments

model A NIMBLE model, either the compiled or uncompiled version

nodes A character vector of node names, with index blocks allowed, such as ’x’, ’y[2]’,
or ’z[1:3, 2:4]’

nodeFxnVector An optional vector of nodeFunctions on which to operate, in lieu of model and
nodes

nodeFunctions 151

nodeFunctionIndex

For internal NIMBLE use only

includeData A logical argument specifying whether data nodes should be simulated into
(only relevant for simulate)

Details

Standard usage is as a method of a model, in the form model$calculate(nodes), but the usage as
a simple function with the model as the first argument as above is also allowed.

These functions expands the nodes and then process them in the model in the order provided. Ex-
panding nodes means turning ’y[1:2]’ into c(’y[1]’,’y[2]’) if y is a vector of scalar nodes. Calcu-
lation is defined for a stochastic node as executing the log probability (density) calculation and for
a deterministic node as calculating whatever function was provided on the right-hand side of the
model declaration.

Difference calculation (calculateDiff) executes the operation(s) on the model as calculate, but it
returns the sum of the difference between the new log probabilities and the previous ones.

Simulation is defined for a stochastic node as drawing a random value from its distribution, and for
deterministic node as equivalent to calculate.

getLogProb collects and returns the sum of the log probabilities of nodes, using the log probability
values currently stored in the model (as generated from the most recent call to calculate on each
node)

These functions can be used from R or in NIMBLE run-time functions that will be compiled. When
executed in R (including when an uncompiled nimbleFunction is executed), they can be slow be-
cause the nodes are expanded each time. When compiled in NIMBLE, the nodes are expanded only
once during compilation, so execution will be much faster.

It is common to want the nodes to be provided in topologically sorted order, so that they will be cal-
culated or simulated following the order of the model graph. Functions such as model$getDependencies(nodes,
...) return nodes in topologically sorted order. They can be directly sorted by model$topologicallySortNodes(nodes),
but if so it is a good idea to expand names first by model$topologicallySortNodes(model$expandNodeNames(nodes))

Value

calculate and getLogProb return the sum of the log probabilities (densities) of the calculated nodes,
with a contribution of 0 from any deterministic nodes

calculateDiff returns the sum of the difference between the new and old log probabilities (densities)
of the calculated nodes, with a contribution of 0 from any deterministic nodes.

simulate returns NULL.

Author(s)

NIMBLE development team

152 optimDefaultControl

optimControlNimbleList

Data type for the control parameter of nimOptim

Description

nimbleList definition for the type of nimbleList input as the control parameter to nimOptim.
See optim for details.

Usage

optimControlNimbleList

Format

An object of class list of length 1.

See Also

optim, nimOptim

optimDefaultControl Creates a deafult control argument for optim (just an empty list).

Description

Creates a deafult control argument for optim (just an empty list).

Usage

optimDefaultControl()

Value

an empty list.

See Also

nimOptim, optim

optimResultNimbleList 153

optimResultNimbleList Data type for the return value of nimOptim

Description

nimbleList definition for the type of nimbleList returned by nimOptim.

Usage

optimResultNimbleList

Format

An object of class list of length 1.

Fields

par The best set of parameters found.
value The value of fn corresponding to par.
counts A two-element integer vector giving the number of calls to fn and gr respectively.
convergence An integer code. 0 indicates successful completion. Possible error codes are 1 indi-

cates that the iteration limit maxit had been reached. 10 indicates degeneracy of the Nelder-
Mead simplex. 51 indicates a warning from the "L-BFGS-B" method; see component message
for further details. 52 indicates an error from the "L-BFGS-B" method; see component mes-
sage for further details.

message A character string giving any additional information returned by the optimizer, or NULL.
hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the Hessian

at the solution found.

See Also

optim, nimOptim

parameterTransform Automated transformations of model nodes to unconstrained scales

Description

Provide general transformations of constrained continuous-valued model nodes (parameters) to un-
constrained scales. It handles the cases of interval-bounded parameters (e.g. uniform or beta dis-
tributions), semi-interval-bounded parameters (e.g. exponential or gamma distributions), and the
multivariate Wishart, inverse Wishart, Dirichlet, and LKJ distributions. Utilities are provided to
transform parameters to an unconstrained scale, back-transform from the unconstrained scale to
the original scale of the constrained parameterization, and to calculate the natural logarithm of the
determinant of the Jacobian matrix of the inverse transformation, calculated at any location in the
transformed (unconstrained) space.

154 parameterTransform

Usage

parameterTransform(model, nodes = character(0), control = list())

Arguments

model A nimble model object. See details.

nodes A character vector specifying model node names to undergo transformation. See
details.

control An optional list allowing for additional control of the transformation. This cur-
rently supports a single element allowDeterm.

Details

The parameterTransform nimbleFunction is an unspecialized function. Calling parameterTransform(model,
nodes) will generate and return a specialized nimbleFunction, which provides transformation func-
tionality for the specified hierarchical model and set of model nodes. The nodes argument can rep-
resent mutliple model nodes arising from distinct prior distributions, which will be simultaneously
transformed according to their respective distributions and constraints.

If the nodes argument is missing or has length zero, then no nodes will be transformed. A special-
ized nimbleFunction is created, but will not transform or operate on any model nodes.

The control argument is a list that supports one additional setting. If control$allowDeterm=FALSE
(the default), deterministic nodes are not allowed in the nodes argument. If control$allowDeterm=TRUE,
deterministic nodes are allowed and assumed to have no constraints on valid values.

This specialized nimbleFunction has the following methods:

transform: Transforms a numeric vector of values from the original constrained model scale to a
vector of values on the unconstrained scale.

inverseTransform: Transforms a numeric vector of values from the unconstrained scale to the
original constrained parameterization scale.

The unconstrained scale may have different dimensionality from the original constrained scale of
the model parameters. For example, a d-dimensional dirichlet distribution is constrained to reside
on a simplex in d-dimensional space. In contrast, the corresponding unconstrained parameterization
is unrestrained in (d-1) dimensional space. The specialized parameterTransform nimbleFunction
also provides utilities to return the dimensionality of the original (constrained) parameterization,
and the transformed (unconstrained) parameterization:

getOriginalLength: Returns the dimensionality (number of scalar elements) of the original con-
strained parameterization.

getTransformedLength: Returns the dimensionality (number of scalar elements) comprising the
transformed unconstrained parameterization.

The specialized parameterTransform nimbleFunction also provides a method for calculating the
natural logarithm of the jacobian of the inverse transformation, calculated at any point in the trans-
formed (unconstrained) space:

logDetJacobian

The parameterTransformation function has no facility for handling discrete-valued parameters.

pow_int 155

Author(s)

Daniel Turek

See Also

buildLaplace

Examples

Not run:
code <- nimbleCode({

a ~ dnorm(0, 1)
b ~ dgamma(1, 1)
c ~ dunif(2, 10)
d[1:3] ~ dmnorm(mu[1:3], cov = C[1:3,1:3])
e[1:3,1:3] ~ dwish(R = C[1:3,1:3], df = 5)

})

constants <- list(mu=rep(0,3), C=diag(3))

Rmodel <- nimbleModel(code, constants)

create a specialized parameterTransform function:
nodes <- c('a', 'b', 'c', 'd', 'e')
pt <- parameterTransform(Rmodel, nodes)

vals <- c(1, 10, 5, 1,2,3, as.numeric(diag(3)))

transform values to unconstrained scale:
transformedVals <- pt$transform(vals)

back-transform to original constrained scale of parameterization
pt$inverseTransform(transformedVals) ## return is same as original vals

dimensionality of original constrained scale = 1 + 1 + 1 + 3 + 9
pt$getOriginalLength() ## 15

dimensionality of transformed (unconstrained) scale = 1 + 1 + 1 + 3 + 6
pt$getTransformedLength() ## 12

log of the jacobian of the inverse transformation matrix:
pt$logDetJacobian(transformedVals)

End(Not run)

pow_int Power function for integer-valued exponent

156 printErrors

Description

pow function with exponent required to be integer

Usage

pow_int(a, b)

Arguments

a Base

b Exponent

Details

This is required in nimble models and nimbleFunctions if derivatives will be tracked but tracked
only with respect to a, such that b might be any (positive, 0, or negative) integer. This contrasts with
pow(a, b) (equivalent to a^b), which requires b > 0 if derivatives will be tracked, even if they will
only be requested with respect to a.

Value

a^b

printErrors Print error messages after failed compilation

Description

Retrieves the error file from R’s tempdir and prints to the screen.

Usage

printErrors(excludeWarnings = TRUE)

Arguments

excludeWarnings

logical indicating whether compiler warnings should be printed; generally such
warnings can be ignored.

Author(s)

Christopher Paciorek

rankSample 157

rankSample Generates a weighted sample (with replacement) of ranks

Description

Takes a set of non-negative weights (do not need to sum to 1) and returns a sample with size ele-
ments of the integers 1:length(weights), where the probability of being sampled is proportional
to the value of weights. An important note is that the output vector will be sorted in ascending or-
der. Also, right now it works slightly odd syntax (see example below). Later releases of NIMBLE
will contain more natural syntax.

Usage

rankSample(weights, size, output, silent = FALSE)

Arguments

weights A vector of numeric weights. Does not need to sum to 1, but must be non-
negative

size Size of sample

output An R object into which the values will be placed. See example below for proper
use

silent Logical indicating whether to suppress logging information

Details

If invalid weights provided (i.e. negative weights or weights sum to 1), sets output = rep(1, size)
and prints warning. rankSample can be used inside nimble functions.

rankSample first samples from the joint distribution size uniform(0,1) distributions by condition-
ally sampling from the rank statistics. This leads to a sorted sample of uniform(0,1)’s. Then, a cdf
vector is constructed from weights. Because the sample of uniforms is sorted, rankSample walks
down the cdf in linear time and fills out the sample.

Author(s)

Clifford Anderson-Bergman

Examples

set.seed(1)
sampInts = NA #sampled integers will be placed in sampInts
rankSample(weights = c(1, 1, 2), size = 10, sampInts)
sampInts
[1] 1 1 2 2 2 2 2 3 3 3
rankSample(weights = c(1, 1, 2), size = 10000, sampInts)
table(sampInts)
#sampInts

158 readBUGSmodel

1 2 3
#2434 2492 5074

#Used in a nimbleFunction
sampGen <- nimbleFunction(setup = function(){
x = 1:2

},
run = function(weights = double(1), k = integer()){
rankSample(weights, k, x)
returnType(integer(1))
return(x)

})
rSamp <- sampGen()
rSamp$run(1:4, 5)
#[1] 3 3 4 4 4

readBUGSmodel Create a NIMBLE BUGS model from a variety of input formats, in-
cluding BUGS model files

Description

readBUGSmodel processes inputs providing the model and values for constants, data, initial values
of the model in a variety of forms, returning a NIMBLE BUGS R model

Usage

readBUGSmodel(
model,
data = NULL,
inits = NULL,
dir = NULL,
useInits = TRUE,
debug = FALSE,
returnComponents = FALSE,
check = getNimbleOption("checkModel"),
calculate = TRUE,
buildDerivs = getNimbleOption("buildModelDerivs")

)

Arguments

model one of (1) a character string giving the file name containing the BUGS model
code, with relative or absolute path, (2) an R function whose body is the BUGS
model code, or (3) the output of nimbleCode. If a file name, the file can contain
a ’var’ block and ’data’ block in the manner of the JAGS versions of the BUGS
examples but should not contain references to other input data files nor a const
block. The ’.bug’ or ’.txt’ extension can be excluded.

readBUGSmodel 159

data (optional) (1) character string giving the file name for an R file providing the
input constants and data as R code [assigning individual objects or as a named
list], with relative or absolute path, or (2) a named list providing the input con-
stants and data. If neither is provided, the function will look for a file named
’name_of_model-data’ including extensions .R, .r, or .txt.

inits (optional) (1) character string giving the file name for an R file providing starting
values as R code [assigning individual objects or as a named list], with relative
or absolute path, or (2) a named list providing the starting values. Unlike JAGS,
this should provide a single set of starting values, and therefore if provided as a
list should be a simple list and not a list of lists.

dir (optional) character string giving the directory where the (optional) files are lo-
cated

useInits boolean indicating whether to set the initial values, either based on inits or by
finding the ’-inits’ file corresponding to the input model file

debug logical indicating whether to put the user in a browser for debugging when
readBUGSmodel calls nimbleModel. Intended for developer use.

returnComponents

logical indicating whether to return pieces of model object without building the
model. Default is FALSE.

check logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’. See nimbleOptions
for details.

calculate logical indicating whether to run calculate on the model after building it; this
will calculate all deterministic nodes and logProbability values given the current
state of all nodes. Default is TRUE. For large models, one might want to disable
this, but note that deterministic nodes, including nodes introduced into the model
by NIMBLE, may be NA.

buildDerivs logical indicating whether to build derivative capabilities for the model.

Details

Note that readBUGSmodel should handle most common ways of providing information on a model
as used in BUGS and JAGS but does not handle input model files that refer to additional files con-
taining data. Please see the BUGS examples provided with NIMBLE in the classic-bugs directory
of the installed NIMBLE package or JAGS (https://sourceforge.net/projects/mcmc-jags/
files/Examples/) for examples of supported formats. Also, readBUGSmodel takes both constants
and data via the ’data’ argument, unlike nimbleModel, in which these are distinguished. The reason
for allowing both to be given via ’data’ is for backwards compatibility with the BUGS examples, in
which constants and data are not distinguished.

Value

returns a NIMBLE BUGS R model

Author(s)

Christopher Paciorek

https://sourceforge.net/projects/mcmc-jags/files/Examples/
https://sourceforge.net/projects/mcmc-jags/files/Examples/

160 registerDistributions

See Also

nimbleModel

Examples

Reading a model defined in the R session

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})
data = list(prior_sd = 1, x = 4)
model <- readBUGSmodel(code, data = data, inits = list(mu = 0))
model$x
model[['mu']]
model$calculate('x')

Reading a classic BUGS model

pumpModel <- readBUGSmodel('pump.bug', dir = getBUGSexampleDir('pump'))
pumpModel$getVarNames()
pumpModel$x

registerDistributions Add user-supplied distributions for use in NIMBLE BUGS models

Description

Register distributional information so that NIMBLE can process user-supplied distributions in BUGS
model code

Usage

registerDistributions(
distributionsInput,
userEnv = parent.frame(),
verbose = nimbleOptions("verbose")

)

Arguments

distributionsInput

either a list or character vector specifying the user-supplied distributions. If a
list, it should be a named list of lists in the form of that shown in nimble:::distributionsInputList
with each list having required field BUGSdist and optional fields Rdist, altParams,
discrete, pqAvail, types, and with the name of the list the same as that of the
density function. Alternatively, simply a character vector providing the names
of the density functions for the user-supplied distributions.

registerDistributions 161

userEnv environment in which to look for the nimbleFunctions that provide the distribu-
tion; this will generally not need to be set by the user as it will default to the
environment from which this function was called.

verbose logical indicating whether to print additional logging information

Details

When distributionsInput is a list of lists, see below for more information on the structure of the
list. When distributionsInput is a character vector, the distribution is assumed to be of standard
form, with parameters assumed to be the arguments provided in the density nimbleFunction, no
alternative parameterizations, and the distribution assumed to be continuous with range from minus
infinity to infinity. The availability of distribution and quantile functions is inferred from whether
appropriately-named functions exist in the global environment.

One usually does not need to explicitly call registerDistributions as it will be called automat-
ically when the user-supplied distribution is used for the first time in BUGS code. However, if one
wishes to provide alternative parameterizations, to provide a range, or to indicate a distribution is
discrete, then one still must explicitly register the distribution using registerDistributions with
the argument in the list format.

Format of the component lists when distributionsInput is a list of lists:

• BUGSdist. A character string in the form of the density name (starting with ’d’) followed
by the names of the parameters in parentheses. When alternative parameterizations are given
in Rdist, this should be an exhaustive list of the unique parameter names from all possible
parameterizations, with the default parameters specified first.

• Rdist. An optional character vector with one or more alternative specifications of the density;
each alternative specification can be an alternative name for the density, a different ordering of
the parameters, different parameter name(s), or an alternative parameterization. In the latter
case, the character string in parentheses should provide a given reparameterization as comma-
separated name = value pairs, one for each default parameter, where name is the name of the
default parameter and value is a mathematical expression relating the default parameter to the
alternative parameters or other default parameters. The default parameters should correspond
to the input arguments of the nimbleFunctions provided as the density and random generation
functions. The mathematical expression can use any of the math functions allowed in NIM-
BLE (see the User Manual) as well as user-supplied nimbleFunctions (which must have no
setup code). The names of your nimbleFunctions for the distribution functions must match
the function name in the Rdist entry (or if missing, the function name in the BUGSdist entry.

• discrete. An optional logical indicating if the distribution is that of a discrete random vari-
able. If not supplied, distribution is assumed to be for a continuous random variable.

• pqAvail. An optional logical indicating if distribution (CDF) and quantile (inverse CDF)
functions are provided as nimbleFunctions. These are required for one to be able to use trun-
cated versions of the distribution. Only applicable for univariate distributions. If not supplied,
assumed to be FALSE.

• altParams. A character vector of comma-separated ’name = value’ pairs that provide the
mathematical expressions relating non-canonical parameters to canonical parameters (canon-
ical parameters are those passed as arguments to your distribution functions). These inverse

https://r-nimble.org/html_manual/cha-welcome-nimble.html

162 registerDistributions

functions are used for MCMC conjugacy calculations when a conjugate relationship is ex-
pressed in terms of non-default parameters (such as the precision for normal-normal conju-
gacy). If not supplied, the system will still function but with a possible loss of efficiency in
certain algorithms.

• types. A character vector of comma-separated ’name = input’ pairs indicating the type and
dimension of the random variable and parameters (including default and alternative parame-
ters). ’input’ should take the form ’double(d)’ or ’integer(d)’, where ’d’ is 0 for scalars, 1 for
vectors, 2 for matrices. Note that since NIMBLE uses doubles for numerical calculations and
the default type is double(0), one should generally use ’double’ and one need only specify
the type for non-scalars. ’name’ should be either ’value’ to indicate the random variable itself
or the parameter name to indicate a given parameter.

• range. A vector of two values giving the range of the distribution for possible use in future
algorithms (not used currently). When the lower or upper limit involves a strict inequality
(e.g., $x>0$), you should simply treat it as a non-strict inequality ($x>=0$, and set the lower
value to 0). Also we do not handle ranges that are functions of parameters, so simply use the
smallest/largest possible values given the possible parameter values. If not supplied this is
taken to be (-Inf, Inf).

Author(s)

Christopher Paciorek

Examples

dmyexp <- nimbleFunction(
run = function(x = double(0), rate = double(0), log = integer(0)) {

returnType(double(0))
logProb <- log(rate) - x*rate
if(log) {

return(logProb)
} else {

return(exp(logProb))
}

})
rmyexp <- nimbleFunction(

run = function(n = integer(0), rate = double(0)) {
returnType(double(0))
if(n != 1) nimPrint("rmyexp only allows n = 1; using n = 1.")
dev <- runif(1, 0, 1)
return(-log(1-dev) / rate)

}
)

registerDistributions(list(
dmyexp = list(

BUGSdist = "dmyexp(rate, scale)",
Rdist = "dmyexp(rate = 1/scale)",
altParams = "scale = 1/rate",
pqAvail = FALSE)))

code <- nimbleCode({
y ~ dmyexp(rate = r)
r ~ dunif(0, 100)

resize 163

})
m <- nimbleModel(code, inits = list(r = 1), data = list(y = 2))
m$calculate('y')
m$r <- 2
m$calculate('y')
m$resetData()
m$simulate('y')
m$y

alternatively, simply specify a character vector with the
name of one or more 'd' functions
deregisterDistributions('dmyexp')
registerDistributions('dmyexp')

or simply use in BUGS code without registration
deregisterDistributions('dmyexp')
m <- nimbleModel(code, inits = list(r = 1), data = list(y = 2))

example of Dirichlet-multinomial registration to illustrate
use of 'types' (note that registration is not actually needed
in this case)
ddirchmulti <- nimbleFunction(

run = function(x = double(1), alpha = double(1), size = double(0),
log = integer(0, default = 0)) {

returnType(double(0))
logProb <- lgamma(size) - sum(lgamma(x)) + lgamma(sum(alpha)) -

sum(lgamma(alpha)) + sum(lgamma(alpha + x)) - lgamma(sum(alpha) +
size)

if(log) return(logProb)
else return(exp(logProb))

})

rdirchmulti <- nimbleFunction(
run = function(n = integer(0), alpha = double(1), size = double(0)) {

returnType(double(1))
if(n != 1) print("rdirchmulti only allows n = 1; using n = 1.")
p <- rdirch(1, alpha)
return(rmulti(1, size = size, prob = p))

})

registerDistributions(list(
ddirchmulti = list(

BUGSdist = "ddirchmulti(alpha, size)",
types = c('value = double(1)', 'alpha = double(1)')
)

))

resize Resizes a modelValues object

164 Rmatrix2mvOneVar

Description

Adds or removes rows to a modelValues object. If rows are added to a modelValues object, the
default values are NA. Works in both R and NIMBLE.

Usage

resize(container, k)

Arguments

container modelValues object

k number of rows that modelValues is set to

Details

See the User Manual or help(modelValuesBaseClass) for infomation about modelValues objects

Author(s)

Clifford Anderson-Bergman

Examples

mvConf <- modelValuesConf(vars = c('a', 'b'),
types = c('double', 'double'),
sizes = list(a = 1, b = c(2,2)))

mv <- modelValues(mvConf)
as.matrix(mv)
resize(mv, 3)
as.matrix(mv)

Rmatrix2mvOneVar Set values of one variable of a modelValues object from an R matrix

Description

Normally a modelValues object is accessed one "row" at a time. This function allows all rows for
one variable to set from a matrix with one dimension more than the variable to be set.

Usage

Rmatrix2mvOneVar(mat, mv, varName, k)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

RmodelBaseClass-class 165

Arguments

mat Input matrix

mv modelValues object to be modified.

varName Character string giving the name of the variable on mv to be set

k Number of rows to use

Details

This function may be deprecated in the future when a more natural system for interacting with
modelValues objects is developed.

RmodelBaseClass-class Class RmodelBaseClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

run.time Time execution of NIMBLE code

Description

Time execution of NIMBLE code

Usage

run.time(code)

Arguments

code code to be timed

Details

Function for use in nimbleFunction run code; when nimbleFunctions are run in R, this simply wraps
system.time.

Author(s)

NIMBLE Development Team

166 runCrossValidate

runCrossValidate Perform k-fold cross-validation on a NIMBLE model fit by MCMC

Description

Takes a NIMBLE model MCMC configuration and conducts k-fold cross-validation of the MCMC
fit, returning a measure of the model’s predictive performance.

Usage

runCrossValidate(
MCMCconfiguration,
k,
foldFunction = "random",
lossFunction = "MSE",
MCMCcontrol = list(),
returnSamples = FALSE,
nCores = 1,
nBootReps = 200,
silent = FALSE

)

Arguments

MCMCconfiguration

a NIMBLE MCMC configuration object, returned by a call to configureMCMC.

k number of folds that should be used for cross-validation.

foldFunction one of (1) an R function taking a single integer argument i, and returning a
character vector with the names of the data nodes to leave out of the model for
fold i, or (2) the character string "random", indicating that data nodes will be
randomly partitioned into k folds. Note that choosing "random" and setting k
equal to the total number of data nodes in the model will perform leave-one-out
cross-validation. Defaults to "random". See ‘Details’.

lossFunction one of (1) an R function taking a set of simulated data and a set of observed
data, and calculating the loss from those, or (2) a character string naming one
of NIMBLE’s built-in loss functions. If a character string, must be one of
"predictive" to use the log predictive density as a loss function or "MSE" to
use the mean squared error as a loss function. Defaults to "MSE". See ‘Details’
for information on creating a user-defined loss function.

MCMCcontrol (optional) an R list with parameters governing the MCMC algorithm, See ‘De-
tails’ for specific parameters.

returnSamples logical indicating whether to return all posterior samples from all MCMC runs.
This can result in a very large returned object (there will be k sets of posterior
samples returned). Defaults to FALSE.

nCores number of cpu cores to use in parallelizing the CV calculation. Only MacOS
and Linux operating systems support multiple cores at this time. Defaults to 1.

runCrossValidate 167

nBootReps number of bootstrap samples to use when estimating the Monte Carlo error of
the cross-validation metric. Defaults to 200. If no Monte Carlo error estimate
is desired, nBootReps can be set to NA, which can potentially save significant
computation time.

silent Boolean specifying whether to show output from the algorithm as it’s running
(default = FALSE).

Details

k-fold CV in NIMBLE proceeds by separating the data in a nimbleModel into k folds, as deter-
mined by the foldFunction argument. For each fold, the corresponding data are held out of the
model, and MCMC is run to estimate the posterior distribution and simultaneously impute posterior
predictive values for the held-out data. Then, the posterior predictive values are compared to the
known, held-out data values via the specified lossFunction. The loss values are averaged over the
posterior samples for each fold, and these averaged values for each fold are then averaged over all
folds to produce a single out-of-sample loss estimate. Additionally, estimates of the Monte Carlo
error for each fold are returned.

Value

an R list with four elements:

• CVvalue. The CV value, measuring the model’s ability to predict new data. Smaller relative
values indicate better model performance.

• CVstandardError. The standard error of the CV value, giving an indication of the total Monte
Carlo error in the CV estimate.

• foldCVInfo. An list of fold CV values and standard errors for each fold.

• samples. An R list, only returned when returnSamples = TRUE. The i’th element of this list
will be a matrix of posterior samples from the model with the i’th fold of data left out. There
will be k sets of samples.

The foldFunction Argument

If the default 'random' method is not used, the foldFunction argument must be an R function
that takes a single integer-valued argument i. i is guaranteed to be within the range [1, k]. For each
integer value i, the function should return a character vector of node names corresponding to the
data nodes that will be left out of the model for that fold. The returned node names can be expanded,
but don’t need to be. For example, if fold i is inteded to leave out the model nodes x[1], x[2] and
x[3] then the function could return either c('x[1]', 'x[2]', 'x[3]') or 'x[1:3]'.

The lossFunction Argument

If you don’t wish to use NIMBLE’s built-in "MSE" or "predictive" loss functions, you may pro-
vide your own R function as the lossFunction argument to runCrossValidate. A user-supplied
lossFunction must be an R function that takes two arguments: the first, named simulatedDataValues,
will be a vector of simulated data values. The second, named actualDataValues, will be a vector
of observed data values corresponding to the simulated data values in simulatedDataValues. The
loss function should return a single scalar number. See ‘Examples’ for an example of a user-defined
loss function.

168 runCrossValidate

The MCMCcontrol Argument

The MCMCcontrol argument is a list with the following elements:

• niter. An integer argument determining how many MCMC iterations should be run for each
loss value calculation. Defaults to 10000, but should probably be manually set.

• nburnin. The number of samples from the start of the MCMC chain to discard as burn-in for
each loss value calculation. Must be between 0 and niter. Defaults to 10

Author(s)

Nicholas Michaud and Lauren Ponisio

Examples

Not run:

We conduct CV on the classic "dyes" BUGS model.

dyesCode <- nimbleCode({
for (i in 1:BATCHES) {
for (j in 1:SAMPLES) {

y[i,j] ~ dnorm(mu[i], tau.within);
}
mu[i] ~ dnorm(theta, tau.between);

}

theta ~ dnorm(0.0, 1.0E-10);
tau.within ~ dgamma(0.001, 0.001); sigma2.within <- 1/tau.within;
tau.between ~ dgamma(0.001, 0.001); sigma2.between <- 1/tau.between;

})

dyesData <- list(y = matrix(c(1545, 1540, 1595, 1445, 1595,
1520, 1440, 1555, 1550, 1440,
1630, 1455, 1440, 1490, 1605,
1595, 1515, 1450, 1520, 1560,
1510, 1465, 1635, 1480, 1580,
1495, 1560, 1545, 1625, 1445),
nrow = 6, ncol = 5))

dyesConsts <- list(BATCHES = 6,
SAMPLES = 5)

dyesInits <- list(theta = 1500, tau.within = 1, tau.between = 1)

dyesModel <- nimbleModel(code = dyesCode,
constants = dyesConsts,
data = dyesData,
inits = dyesInits)

Define the fold function.
This function defines the data to leave out for the i'th fold
as the i'th row of the data matrix y. This implies we will have

runLaplace 169

6 folds.

dyesFoldFunction <- function(i){
foldNodes_i <- paste0('y[', i, ',]') # will return 'y[1,]' for i = 1 e.g.
return(foldNodes_i)

}

We define our own loss function as well.
The function below will compute the root mean squared error.

RMSElossFunction <- function(simulatedDataValues, actualDataValues){
dataLength <- length(simulatedDataValues) # simulatedDataValues is a vector
SSE <- 0
for(i in 1:dataLength){

SSE <- SSE + (simulatedDataValues[i] - actualDataValues[i])^2
}
MSE <- SSE / dataLength
RMSE <- sqrt(MSE)
return(RMSE)

}

dyesMCMCconfiguration <- configureMCMC(dyesModel)

crossValOutput <- runCrossValidate(MCMCconfiguration = dyesMCMCconfiguration,
k = 6,
foldFunction = dyesFoldFunction,
lossFunction = RMSElossFunction,
MCMCcontrol = list(niter = 5000,

nburnin = 500))

End(Not run)

runLaplace Combine steps of running Laplace or adaptive Gauss-Hermite
quadrature approximation

Description

Use an approximation (compiled or uncompiled) returned from ‘buildLaplace‘ or ‘buildAGHQ‘ to
find the maximum likelihood estimate and return it with random effects estimates and/or standard
errors.

Usage

runLaplace(
laplace,
pStart,
originalScale = TRUE,
randomEffectsStdError = TRUE,

170 runLaplace

jointCovariance = FALSE
)

runAGHQ(
AGHQ,
pStart,
originalScale = TRUE,
randomEffectsStdError = TRUE,
jointCovariance = FALSE

)

Arguments

laplace A (compiled or uncompiled) nimble laplace approximation object returned from
‘buildLaplace‘ or ‘buildAGHQ‘. These return the same type of approximation
algorithm object. ‘buildLaplace‘ is simply ‘buildAGHQ‘ with ‘nQuad=1‘.

pStart Initial values for parameters to begin optimization search for the maximum like-
lihood estimates. If omitted, the values currently in the (compiled or uncom-
piled) model object will be used.

originalScale If TRUE, return all results on the original scale of the parameters and/or random
effects as written in the model. Otherwise, return all results on potentially un-
constrained transformed scales that are used in the actual computations. Trans-
formed scales (parameterizations) are used if any parameter or random effect
has contraint(s) on its support (range of allowed values). Default = TRUE.

randomEffectsStdError

If TRUE, include standard errors for the random effects estimates. Default =
TRUE.

jointCovariance

If TRUE, return the full joint covariance matrix (inverse of the Hessian) of pa-
rameters and random effects. Default = FALSE.

AGHQ Same as laplace.

Details

Adaptive Gauss-Hermite quadrature is a generalization of Laplace approximation. runLaplace
simply calles runAGHQ and provides a convenient name.

These functions manage the steps of calling the ‘findMLE‘ method to obtain the maximum like-
lihood estimate of the parameters and then the ‘summaryLaplace‘ function to obtain standard er-
rors, (optionally) random effects estimates (conditional modes), their standard errors, and the full
parameter-random effects covariance matrix.

Note that for ‘nQuad > 1‘ (see buildAGHQ), i.e., AGHQ with higher order than Laplace approx-
imation, maximum likelihood estimation is available only if all random effects integrations are
univariate. With multivariate random effects integrations, one can use ‘nQuad > 1‘ only to calculate
marginal log likelihoods at given parameter values. This is useful for checking the accuracy of the
log likelihood at the MLE obtained for Laplace approximation (‘nQuad == 1‘). ‘nQuad‘ can be
changed using the ‘updateSettings‘ method of the approximation object.

See summaryLaplace, which is called for the summary components.

runMCMC 171

Value

A list with elements MLE and summary.

MLE is the result of the findMLE method, which contains the parameter estimates and Hessian matrix.
This is considered raw output, and one should normally use instead the contents of summary. (For
example not that the Hessian matrix in MLE may not correspond to the same scale as the parameter
estimates if a transformation was used to operate in an unconstrained parameter space.)

summary is the result of summaryLaplace (or equivalently summaryAGHQ), which contains parameter
estimates and standard errors, and optionally other requested components. All results in this object
will be on the same scale (parameterization), either original or transformed, as requested.

runMCMC Run one or more chains of an MCMC algorithm and return samples,
summary and/or WAIC

Description

Takes as input an MCMC algorithm (ideally a compiled one for speed) and runs the MCMC with
one or more chains, any returns any combination of posterior samples, posterior summary statistics,
and a WAIC value.

Usage

runMCMC(
mcmc,
niter = 10000,
nburnin = 0,
thin,
thin2,
nchains = 1,
inits,
setSeed = FALSE,
progressBar = getNimbleOption("MCMCprogressBar"),
samples = TRUE,
samplesAsCodaMCMC = FALSE,
summary = FALSE,
WAIC = FALSE,
perChainWAIC = FALSE

)

Arguments

mcmc A NIMBLE MCMC algorithm. See details.

niter Number of iterations to run each MCMC chain. Default value is 10000.

nburnin Number of initial, pre-thinning, MCMC iterations to discard. Default value is 0.

172 runMCMC

thin Thinning interval for collecting MCMC samples, corresponding to monitors.
Thinning occurs after the initial nburnin samples are discarded. Default value is
1.

thin2 Thinning interval for collecting MCMC samples, corresponding to the second,
optional set of monitors2. Thinning occurs after the initial nburnin samples are
discarded. Default value is 1.

nchains Number of MCMC chains to run. Default value is 1.

inits Optional argument to specify initial values for each chain. See details.

setSeed Logical or numeric argument. If a numeric vector of length nchains is provided,
then each element of this vector is provided as R’s random number seed at the
onset of the corresponding MCMC chain. Otherwise, in the case of a logical
value, if TRUE, then R’s random number seed for the ith chain is set to be i, at
the onset of each MCMC chain, and if FALSE, the random number seed is never
set or modified. The case of providing a single numeric value for this argument
is not supported, except in the case when nchains = 1. If the same starting seed
is desired for each chain, use setSeed = rep(seed, nchains). Default value is
FALSE.

progressBar Logical argument. If TRUE, an MCMC progress bar is displayed during exe-
cution of each MCMC chain. Default value is defined by the nimble package
option MCMCprogressBar.

samples Logical argument. If TRUE, then posterior samples are returned from each MCMC
chain. These samples are optionally returned as coda mcmc objects, depending
on the samplesAsCodaMCMC argument. Default value is TRUE. See details.

samplesAsCodaMCMC

Logical argument. If TRUE, then a coda mcmc object is returned instead of an R
matrix of samples, or when nchains > 1 a coda mcmc.list object is returned
containing nchains mcmc objects. This argument is only used when samples is
TRUE. Default value is FALSE. See details.

summary Logical argument. When TRUE, summary statistics for the posterior samples of
each parameter are also returned, for each MCMC chain. This may be returned
in addition to the posterior samples themselves. Default value is FALSE. See
details.

WAIC Logical argument. When TRUE, the WAIC (Watanabe, 2010) of the model is
calculated and returned. Note that in order for the WAIC to be calculated, the
mcmc object must have also been created with the argument ‘enableWAIC =
TRUE‘. If multiple chains are run, then a single WAIC value is calculated using
the posterior samples from all chains. Default value is FALSE. See help(waic).

perChainWAIC Logical argument. When TRUE and multiple chains are run, the WAIC for each
chain is returned as a means of helping assess the stability of the WAIC estimate.
Default value is FALSE.

Details

At least one of samples, summary or WAIC must be TRUE, since otherwise, nothing will be returned.
Any combination of these may be TRUE, including possibly all three, in which case posterior samples

runMCMC 173

and summary statistics are returned for each MCMC chain, and an overall WAIC value is calculated
and returned.

When samples = TRUE, the form of the posterior samples is determined by the samplesAsCodaMCMC
argument, as either matrices of posterior samples, or coda mcmc and mcmc.list objects.

Posterior summary statistics are returned individually for each chain, and also as calculated from
all chains combined (when nchains > 1).

If provided, the inits argument can be one of three things:

(1) a function to generate initial values, which will be executed to generate initial values at the
beginning of each MCMC chain, or (2) a single named list of initial values which, will be used for
each chain, or (3) a list of length nchains, each element being a named list of initial values which
be used for one MCMC chain.

The inits argument may also be omitted, in which case the current values in the model object will
be used as the initial values of the first chain, and subsequent chains will begin using starting values
where the previous chain ended.

Other aspects of the MCMC algorithm, such as the specific sampler assignments, must be specified
in advance using the MCMC configuration object (created using configureMCMC), which is then
used to build an MCMC algorithm (using buildMCMC) argument.

The niter argument specifies the number of pre-thinning MCMC iterations, and the nburnin ar-
gument specifies the number of pre-thinning MCMC samples to discard. After discarding these
burn-in samples, thinning of the remaining samples will take place. The total number of posterior
samples returned will be floor((niter-nburnin)/thin).

The MCMC option mcmc$run(..., reset = FALSE), used to continue execution of an MCMC
chain, is not available through runMCMC().

Value

A list is returned with named elements depending on the arguments passed to nimbleMCMC, unless
this list contains only a single element, in which case only that element is returned. These elements
may include samples, summary, and WAIC, and when the MCMC is monitoring a second set of
nodes using monitors2, also samples2. When nchains = 1, posterior samples are returned as a
single matrix, and summary statistics as a single matrix. When nchains > 1, posterior samples are
returned as a list of matrices, one matrix for each chain, and summary statistics are returned as a list
containing nchains+1 matrices: one matrix corresponding to each chain, and the final element pro-
viding a summary of all chains, combined. If samplesAsCodaMCMC is TRUE, then posterior samples
are provided as coda mcmc and mcmc.list objects. When WAIC is TRUE, a WAIC summary object
is returned.

Author(s)

Daniel Turek

See Also

configureMCMC buildMCMC nimbleMCMC

174 sampler_BASE

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10) {

x[i] ~ dnorm(mu, sd = sigma)
}

})
Rmodel <- nimbleModel(code)
Rmodel$setData(list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3)))
Rmcmc <- buildMCMC(Rmodel)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
inits <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))
samplesList <- runMCMC(Cmcmc, niter = 10000, nchains = 3, inits = inits)

End(Not run)

sampler_BASE MCMC Sampling Algorithms

Description

Details of the MCMC sampling algorithms provided with the NIMBLE MCMC engine; HMC
samplers are in the nimbleHMC package and particle filter samplers are in the nimbleSMC package.

Usage

sampler_BASE()

sampler_prior_samples(model, mvSaved, target, control)

sampler_posterior_predictive(model, mvSaved, target, control)

sampler_binary(model, mvSaved, target, control)

sampler_categorical(model, mvSaved, target, control)

sampler_noncentered(model, mvSaved, target, control)

sampler_RW(model, mvSaved, target, control)

sampler_RW_block(model, mvSaved, target, control)

sampler_RW_llFunction(model, mvSaved, target, control)

sampler_BASE 175

sampler_slice(model, mvSaved, target, control)

sampler_ess(model, mvSaved, target, control)

sampler_AF_slice(model, mvSaved, target, control)

sampler_crossLevel(model, mvSaved, target, control)

sampler_RW_llFunction_block(model, mvSaved, target, control)

sampler_RW_multinomial(model, mvSaved, target, control)

sampler_RW_dirichlet(model, mvSaved, target, control)

sampler_RW_wishart(model, mvSaved, target, control)

sampler_RW_lkj_corr_cholesky(model, mvSaved, target, control)

sampler_RW_block_lkj_corr_cholesky(model, mvSaved, target, control)

sampler_CAR_normal(model, mvSaved, target, control)

sampler_CAR_proper(model, mvSaved, target, control)

sampler_polyagamma(model, mvSaved, target, control)

sampler_RJ_fixed_prior(model, mvSaved, target, control)

sampler_RJ_indicator(model, mvSaved, target, control)

sampler_RJ_toggled(model, mvSaved, target, control)

sampler_CRP_concentration(model, mvSaved, target, control)

sampler_CRP(model, mvSaved, target, control)

sampler_slice_CRP_base_param(model, mvSaved, target, control)

Arguments

model (uncompiled) model on which the MCMC is to be run

mvSaved modelValues object to be used to store MCMC samples

target node(s) on which the sampler will be used

control named list that controls the precise behavior of the sampler, with elements spe-
cific to samplertype. The default values for control list are specified in the setup
code of each sampling algorithm. Descriptions of each sampling algorithm, and
the possible customizations for each sampler (using the control argument) ap-
pear below.

176 sampler_BASE

Hamiltonian Monte Carlo samplers

Hamiltonian Monte Carlo (HMC) samplers are provided separately in the nimbleHMC R package.
After loading nimbleHMC, see help(HMC) for details.

Particle filter samplers

As of Version 0.10.0 of NIMBLE, the RW_PF and RW_PF_block samplers are provided separately in
the ‘nimbleSMC‘ package. After loading nimbleSMC, see help(samplers) for details.

sampler_base

base class for new samplers

When you write a new sampler for use in a NIMBLE MCMC (see User Manual), you must include
contains = sampler_BASE.

binary sampler

The binary sampler performs Gibbs sampling for binary-valued (discrete 0/1) nodes. This can only
be used for nodes following either a dbern(p) or dbinom(p, size=1) distribution.

The binary sampler accepts no control list arguments.

categorical sampler

The categorical sampler performs Gibbs sampling for a single node, which generally would follow
a categorical (dcat) distribution. The categorical sampler can be assigned to other distributions as
well, in which case the number of possible outcomes (1, 2, 3, ..., k) of the distribution must be
specified using the ’length’ control argument.

The categorical sampler accepts the following control list elements:

• length. A character string or a numeric argument. When a character string, this should be
the name of a parameter of the distribution of the target node being sampled. The length of
this distribution parameter (considered as a 1-dimensional vector) will be used to determine
the number of possible outcomes of the target node’s distribution. When a numeric value,
this value will be used as the number of possible outcomes of the target node’s distribution.
(default = "prob")

• check. A logical argument. When FALSE, no check for a ’dcat’ prior distribution for the
target node takes place. (default = TRUE)

RW sampler

The RW sampler executes adaptive Metropolis-Hastings sampling with a normal proposal distribu-
tion (Metropolis, 1953), implementing the adaptation routine given in Shaby and Wells, 2011. This
sampler can be applied to any scalar continuous-valued stochastic node, and can optionally sample
on a log scale.

The RW sampler accepts the following control list elements:

• log. A logical argument, specifying whether the sampler should operate on the log scale.
(default = FALSE)

https://r-nimble.org/html_manual/cha-welcome-nimble.html

sampler_BASE 177

• reflective. A logical argument, specifying whether the normal proposal distribution should
reflect to stay within the range of the target distribution. (default = FALSE)

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution to achieve a theoretically de-
sirable acceptance rate. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW sampler will perform its adaptation procedure. This
updates the scale variable, based upon the sampler’s achieved acceptance rate over the past
adaptInterval iterations. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the normal proposal standard deviation. If adaptive = FALSE, scale
will never change. (default = 1)

The RW sampler cannot be used with options log=TRUE and reflective=TRUE, i.e. it cannot do
reflective sampling on a log scale.

After an MCMC algorithm has been configured and built, the value of the proposal standard de-
viation of a RW sampler can be modified using the setScale method of the sampler object. This
use the scalar argument to modify the current value of the proposal standard deviation, as well as
modifying the initial (pre-adaptation) value to which the proposal standard deviation is reset, at the
onset of a new MCMC chain.

RW_block sampler

The RW_block sampler performs a simultaneous update of one or more model nodes, using an
adaptive Metropolis-Hastings algorithm with a multivariate normal proposal distribution (Roberts
and Sahu, 1997), implementing the adaptation routine given in Shaby and Wells, 2011. This sam-
pler may be applied to any set of continuous-valued model nodes, to any single continuous-valued
multivariate model node, or to any combination thereof.

The RW_block sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (a coeffi-
cient for the entire proposal covariance matrix) and propCov (the multivariate normal proposal
covariance matrix) throughout the course of MCMC execution. If only the scale should un-
dergo adaptation, this argument should be specified as TRUE. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW_block sampler will perform its adaptation procedure,
based on the past adaptInterval iterations. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

178 sampler_BASE

• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will
never change. (default = 1)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the character string ’identity’, in which case the identity matrix of
the appropriate dimension will be used for the initial proposal covariance matrix. (default =
’identity’)

• tries. The number of times this sampler will repeatedly operate on each MCMC iteration.
Each try consists of a new proposed transition and an accept/reject decision of this proposal.
Specifying tries > 1 can help increase the overall sampler acceptance rate and therefore chain
mixing. (default = 1)

After an MCMC algorithm has been configured and built, the value of the proposal standard devia-
tion of a RW_block sampler can be modified using the setScale method of the sampler object. This
use the scalar argument to will modify the current value of the proposal standard deviation, as well
as modifying the initial (pre-adaptation) value which the proposal standard deviation is reset to, at
the onset of a new MCMC chain.

Operating analogous to the setScale method, the RW_block sampler also has a setPropCov method.
This method accepts a single matrix-valued argument, which will modify both the current and initial
(used at the onset of a new MCMC chain) values of the multivariate normal proposal covariance.

Note that modifying elements of the control list may greatly affect the performance of this sam-
pler. In particular, the sampler can take a long time to find a good proposal covariance when the
elements being sampled are not on the same scale. We recommend providing an informed value
for propCov in this case (possibly simply a diagonal matrix that approximates the relative scales),
as well as possibly providing a value of scale that errs on the side of being too small. You may
also consider decreasing adaptFactorExponent and/or adaptInterval, as doing so has greatly
improved performance in some cases.

Barker proposal sampler

The Barker proposal sampler implements a (multivariate) gradient-based sampling scheme, fol-
lowing the work of Livingstone and Zanella (2022) and Vogrinc et al. (2023). This sampler may
be applied to any set of continuous-valued model nodes, to any single continuous-valued multi-
variate model node, or to any combination thereof. The sampler uses an gradient-based adaptive
Metropolis-Hastings algorithm with a multivariate normal proposal distribution, which can use a
full proposal covariance matrix (recommended for most problems) or a diagonal matrix. To use the
Barker sampler, you must set buildDerivs = TRUE when creating your model via nimbleModel.

The Barker sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scalar global
scale (a coefficient scaling the entire proposal covariance matrix) and (possibly) the multivari-
ate normal proposal covariance matrix throughout the course of MCMC execution. If only the
scale should undergo adaptation, this argument should be specified as TRUE. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
the global scale and not for the covariance matrix. This argument is only relevant when
adaptive = TRUE. When adaptScaleOnly = TRUE, only the scale is adapted, tuned to achieve
a theoretically good acceptance rate (specified by targetAcceptanceRate). (default = FALSE)

sampler_BASE 179

• adaptCov. A logical argument, specifying whether adaption should be done for the full
proposal covariance matrix (TRUE) or only for the diagonal of the matrix (the proposal vari-
ances) (FALSE). This argument is only relevant when adaptive = TRUE and adaptScaleOnly
= FALSE. The full covariance matrix or diagonal values are tuned to mimic the full covariance
or the variances, respectively, of the empirical samples from the posterior.

• scale. Initial multiplier that scales the step-size of the proposal steps. If adaptation is turned
off, this determines the step-size. (default = 1)

• propCov. Initial value for proposal covariance. This can be the string "identity" (indicating the
identity matrix), a single number that scales the identity matrix, a vector of values that provides
the diagonal values (variances) of the matrix (of length equal to the number of parameters in
the transformed space), or a full proposal covariance matrix (with number of rows and columns
equal to the number of parameters in the transformed space). (default = 1)

• adaptInterval. The interval on which to perform adaptation of the scale (and diagonal
variance values when adaptCov = FALSE). At the moment only the value 1 is allowed.

• adaptIntervalCov. The interval on which to perform adaptation of the full proposal co-
variance. This only has effect when adaptCov = TRUE. The default of 10 was chosen based
on performance on various examples but other values may improve mixing in specific cases.
Note that if invariantWeight = FALSE, changing this value also has the effect of modify-
ing the influence of the most recent set of empirical samples relative to the current proposal
covariance. (default = 10)

• adaptDelayCov. The number of initial iterations in which the off-diagonal elements of the
proposal covariance are not adapted. In experiments, adapting the full covariance from the first
iteration can produce an algorithm that performs poorly as the covariances may be adapted
while the chain is still burning in, during whih the samples are not reflective of the posterior.
Only relevant if adaptCov = TRUE. The default of 100 was chosen based on performance on
various examples but other values may improve mixing in specific cases. (default = 100)

• adaptFactorExponent. Exponent controlling the rate of decay of the scale adaptation factor.
As suggested in Livingstone and Zanella (2022), the default is 0.6.

• targetAcceptanceRate. Acceptance rate targeted when adapting the global scale. As sug-
gested in Vogrinc et al. (2023) the default is 0.574, as in the MALA algorithm.

• bimodal. A logical argument indicating whether to use the bimodal proposal of Vogrinc et al.
(2023) (TRUE) or simply a normal distribution (FALSE). (default = TRUE)

• sigma. The value of sigma in the bimodal Barker proposal suggested in Vogrinc et al. (2023).
Only used if bimodal = TRUE. (default = 0.1)

• invariantWeight. A logical argument indicating whether to modify the relative weight of
the most recent set of empirical samples relative to the current proposal covariance such that
changing adaptIntervalCov has little effect on the weighting. While in principle setting this
to TRUE makes sense, in experiments this tended to make MCMC performance worse, so the
default is FALSE.

The Barker proposal provides a gradient-based Metropolis-Hastings algorithm demonstrated to be
more robust to tuning parameters than other gradient-based methods, in particular the Metropolis-
adjusted Langevin algorithm (MALA). The approach tends to do a better job of adjusting to hetero-
geneity in the scaling of the target elements and to bad (particularly overly large) initial proposal
variance(s) than random walk Metropolis-Hastings (i.e., the RW_block sampler).

180 sampler_BASE

For some problems without strong dependence, adapting only the diagonal of the proposal co-
variance (adaptCov = FALSE) may perform well, but for most problems, use of the full proposal
covariance matrix is expected to perform better. The implementation of the proposal covariance for
the Barker proposal is derived based on the use of preconditioning to transform the parameters to
be approximately linearly independent. This is equivalent to and implemented as a dense proposal
covariance matrix.

Adaptation of the full proposal covariance matrix (i.e., of the off-diagonal elements) starting from
the first iteration of the MCMC can cause poor MCMC performance by adapting the covariances
based on samples in which the MCMC is burning in, which can prevent the sampler from burning
in and from finding a good proposal covariance in a reasonable number of iterations. For this
reason, by default the sampler only adapts the global scale and proposal variances for the first
adaptDelayCov iterations, defaulting to 100 iterations.

The Barker proposal uses the gradient of the log posterior density with respect to the parameters,
using nimble’s automatic differentiation (AD) system. Given this, elements of the target vector that
are constrained in some fashion (either by their prior or relative to other elements, such as sampling
the elements of a Dirichlet-distributed vector or the elements of a positive definite matrix) are trans-
formed to an unconstrained space using nimble’s automatic parameter transformation system. Thus
the proposal covariance is with respect to this transformed space.

To use this sampler instead of ‘RW_block‘ as the default multivariate sampler for continuous dis-
tributions, set nimbleOptions(MCMCuseBarkerAsDefaultMV = TRUE)

After an MCMC algorithm has been configured and built, the value of the global scale of a Barker
sampler can be modified using the setScale method of the sampler object. This use the scalar argu-
ment to will modify the current value of the scale, as well as modifying the initial (pre-adaptation)
value which the scale is reset to, at the onset of a new MCMC chain.

Operating analogous to the setScale method, the Barker sampler also has a setPropVar (for when
adaptCov = FALSE) and setPropCov (for when adaptCov = TRUE). These method accept a single
vector- and matrix-valued argument, respectively, which will modify both the current and initial
(used at the onset of a new MCMC chain) values of the multivariate normal proposal variances or
covariance, respectively.

RW_llFunction sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater instead
of simply using the model. For example, one could use a sampler with a log likelihood that analyt-
ically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log
likelihood that comes from a stochastic approximation such as a particle filter, allowing composi-
tion of a particle MCMC (PMCMC) algorithm (Andrieu et al., 2010). The RW_llFunction sampler
handles this by using a Metropolis-Hastings algorithm with a normal proposal distribution and a
user-provided log-likelihood function. To allow compiled execution, the log-likelihood function
must be provided as a specialized instance of a nimbleFunction. The log-likelihood function may
use the same model as the MCMC as a setup argument, but if so the state of the model should be
unchanged during execution of the function (or you must understand the implications otherwise).

The RW_llFunction sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

sampler_BASE 181

• scale. The initial value of the normal proposal standard deviation. (default = 1)

• llFunction. A specialized nimbleFunction that accepts no arguments and returns a scalar dou-
ble number. The return value must be the total log-likelihood of all stochastic dependents of
the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves – or what-
ever surrogate is being used for the total log-likelihood. This is a required element with no
default.

• includesTarget. Logical variable indicating whether the return value of llFunction includes the
log-likelihood associated with target. This is a required element with no default.

slice sampler

The slice sampler performs slice sampling of the scalar node to which it is applied (Neal, 2003).
This sampler can operate on either continuous-valued or discrete-valued scalar nodes. The slice
sampler performs a ’stepping out’ procedure, in which the slice is iteratively expanded to the left or
right by an amount sliceWidth. This sampler is optionally adaptive, governed by a control list ele-
ment, whereby the value of sliceWidth is adapted towards the observed absolute difference between
successive samples.

The slice sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler will adapt the value of sliceWidth
throughout the course of MCMC execution. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

• sliceWidth. The initial value of the width of each slice, and also the width of the expansion
during the iterative ’stepping out’ procedure. (default = 1)

• sliceMaxSteps. The maximum number of expansions which may occur during the ’stepping
out’ procedure. (default = 100)

• maxContractions. The maximum number of contractions of the interval that may occur during
sampling (this prevents infinite looping in unusual situations). (default = 100)

• maxContractionsWarning. A logical argument specifying whether to warn when the maximum
number of contractions is reached. (default = TRUE)

ess sampler

The ess sampler performs elliptical slice sampling of a single node, which must follow either a
univariate or multivariate normal distribution (Murray, 2010). The algorithm is an extension of slice
sampling (Neal, 2003), generalized to context of the Gaussian distribution. An auxiliary variable
is used to identify points on an ellipse (which passes through the current node value) as candidate
samples, which are accepted contingent upon a likelihood evaluation at that point. This algorithm
requires no tuning parameters and therefore no period of adaptation, and may result in very efficient
sampling from Gaussian distributions.

The ess sampler accepts the following control list arguments.

• maxContractions. The maximum number of contractions of the interval that may occur during
sampling (this prevents infinite looping in unusual situations). (default = 100)

• maxContractionsWarning. A logical argument specifying whether to warn when the maximum
number of contractions is reached. (default = TRUE)

182 sampler_BASE

AF_slice sampler

The automated factor slice sampler conducts a slice sampling algorithm on one or more model
nodes. The sampler uses the eigenvectors of the posterior covariance between these nodes as an
orthogonal basis on which to perform its ’stepping Out’ procedure. The sampler is adaptive in
updating both the width of the slices and the values of the eigenvectors. The sampler can be applied
to any set of continuous or discrete-valued model nodes, to any single continuous or discrete-valued
multivariate model node, or to any combination thereof. The automated factor slice sampler accepts
the following control list elements:

• sliceWidths. A numeric vector of initial slice widths. The length of the vector must be equal to
the sum of the lengths of all nodes being used by the automated factor slice sampler. Defaults
to a vector of 1’s.

• sliceAdaptFactorMaxIter. The number of iterations for which the factors (eigenvectors) will
continue to adapt to the posterior correlation. (default = 15000)

• sliceAdaptFactorInterval. The interval on which to perform factor adaptation. (default = 200)

• sliceAdaptWidthMaxIter. The maximum number of iterations for which to adapt the widths
for a given set of factors. (default = 512)

• sliceAdaptWidthTolerance. The tolerance for when widths no longer need to adapt, between
0 and 0.5. (default = 0.1)

• sliceMaxSteps. The maximum number of expansions which may occur during the ’stepping
out’ procedure. (default = 100)

• maxContractions. The maximum number of contractions of the interval that may occur during
sampling (this prevents infinite looping in unusual situations). (default = 100)

• maxContractionsWarning. A logical argument specifying whether to warn when the maximum
number of contractions is reached. (default = TRUE)

crossLevel sampler

This sampler is constructed to perform simultaneous updates across two levels of stochastic depen-
dence in the model structure. This is possible when all stochastic descendents of node(s) at one level
have conjugate relationships with their own stochastic descendents. In this situation, a Metropolis-
Hastings algorithm may be used, in which a multivariate normal proposal distribution is used for
the higher-level nodes, and the corresponding proposals for the lower-level nodes undergo Gibbs
(conjugate) sampling. The joint proposal is either accepted or rejected for all nodes involved based
upon the Metropolis-Hastings ratio. This sampler is a conjugate version of Scheme 3 in Knorr-Held
and Rue (2002). It can also be seen as a Metropolis-based version of collapsed Gibbs sampling (in
particular Sampler 3 of van Dyk and Park (2008)).

The requirement that all stochastic descendents of the target nodes must themselves have only con-
jugate descendents will be checked when the MCMC algorithm is built. This sampler is useful when
there is strong dependence across the levels of a model that causes problems with convergence or
mixing.

The crossLevel sampler accepts the following control list elements:

• adaptive. Logical argument, specifying whether the multivariate normal proposal distribution
for the target nodes should be adaptived. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

sampler_BASE 183

• scale. The initial value of the scalar multiplier for propCov. (default = 1)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the character string ’identity’ or any positive definite matrix of the
appropriate dimensions. (default = ’identity’)

RW_llFunction_block sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater instead
of simply using the model. For example, one could use a sampler with a log likelihood that analyt-
ically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log
likelihood that comes from a stochastic approximation such as a particle filter, allowing composi-
tion of a particle MCMC (PMCMC) algorithm (Andrieu et al., 2010) (but see samplers listed below
for NIMBLE’s direct implementation of PMCMC). The RW_llFunction_block sampler handles
this by using a Metropolis-Hastings algorithm with a multivariate normal proposal distribution and
a user-provided log-likelihood function. To allow compiled execution, the log-likelihood function
must be provided as a specialized instance of a nimbleFunction. The log-likelihood function may
use the same model as the MCMC as a setup argument, but if so the state of the model should be
unchanged during execution of the function (or you must understand the implications otherwise).

The RW_llFunction_block sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the proposal co-
variance throughout the course of MCMC execution. (default is TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will
never change. (default = 1)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the character string ’identity’, in which case the identity matrix of
the appropriate dimension will be used for the initial proposal covariance matrix. (default =
’identity’)

• llFunction. A specialized nimbleFunction that accepts no arguments and returns a scalar dou-
ble number. The return value must be the total log-likelihood of all stochastic dependents of
the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves – or what-
ever surrogate is being used for the total log-likelihood. This is a required element with no
default.

• includesTarget. Logical variable indicating whether the return value of llFunction includes the
log-likelihood associated with target. This is a required element with no default.

184 sampler_BASE

RW_multinomial sampler

This sampler updates latent multinomial distributions, using Metropolis-Hastings proposals to move
observations between pairs of categories. Each proposal moves one or more observations from one
category to another category, and acceptance or rejection follows standard Metropolis-Hastings the-
ory. The number of observations in the proposed move is randomly drawn from a discrete uniform
distribution, which is bounded above by the ’maxMove’ control argument. The RW_multinomial
sampler can make multiple independent attempts at transitions on each sampling iteration, which is
govered by the ’tries’ control argument.

The RW_multinomial sampler accepts the following control list elements:

• maxMove. An integer argument, specifying the upper bound for the number of observations
to propose moving, on each independent propose/accept/reject step. The number to move is
drawn from a discrete uniform distribution, with lower limit one, and upper limit given by the
minimum of ’maxMove’ and the number of observations in the category. The default value
for ’maxMove’ is 1/20 of the total number of observations comprising the target multinomial
distribution (given by the ’size’ parameter of the distribution).

• tries. An integer argument, specifying the number of independent Metropolis-Hastings pro-
posals (and subsequent acceptance or rejection) that are attempted each time the sampler oper-
ates. For example, if ’tries’ is one, then a single proposal (of moving one or more observations
to a different category) will be made, and either accepted or rejected. If tries is two, this pro-
cess is repeated twice. The default value for ’tries’ scales as the cube root of the total number
of observations comprising the target multinomial distribution (given by the ’size’ parameter
of the distribution).

RW_dirichlet sampler

This sampler is designed for sampling non-conjugate Dirichlet distributions. The sampler per-
forms a series of Metropolis-Hastings updates (on the log scale) to each component of a gamma-
reparameterization of the target Dirichlet distribution. The acceptance or rejection of these propos-
als follows a standard Metropolis-Hastings procedure.

The RW_dirichlet sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should independently adapt
the scale (proposal standard deviation, on the log scale) for each componentwise Metropolis-
Hasting update, to achieve a theoretically desirable acceptance rate for each. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the sampler will perform its adaptation procedure. (default =
200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the proposal standard deviation (on the log scale) for each compo-
nent of the reparameterized Dirichlet distribution. If adaptive = FALSE, the proposal standard
deviations will never change. (default = 1)

RW_wishart sampler

This sampler is designed for sampling non-conjugate Wishart and inverse-Wishart distributions.
More generally, it can update any symmetric positive-definite matrix (for example, scaled covari-

sampler_BASE 185

ance or precision matrices). The sampler performs block Metropolis-Hastings updates following a
transformation to an unconstrained scale (Cholesky factorization of the original matrix, then taking
the log of the main diagonal elements.

The RW_wishart sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale and
proposal covariance for the multivariate normal Metropolis-Hasting proposals, to achieve a
theoretically desirable acceptance rate for each. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the sampler will perform its adaptation procedure. (default =
200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for the multivariate normal Metropolis-Hastings
proposal covariance. If adaptive = FALSE, scale will never change. (default = 1)

RW_block_lkj_corr_cholesky sampler

This sampler is designed for sampling non-conjugate LKJ correlation Cholesky factor distributions.
The sampler performs a blocked Metropolis-Hastings update following a transformation to an un-
constrained scale (using the signed stickbreaking approach documented in Section 10.12 of the Stan
Language Reference Manual, version 2.27).

The RW_block_lkj_corr_cholesky sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (a coeffi-
cient for the entire proposal covariance matrix) and propCov (the multivariate normal proposal
covariance matrix) throughout the course of MCMC execution. If only the scale should un-
dergo adaptation, this argument should be specified as TRUE. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW_block sampler will perform its adaptation procedure,
based on the past adaptInterval iterations. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will
never change. (default = 1)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the character string ’identity’, in which case the identity matrix of
the appropriate dimension will be used for the initial proposal covariance matrix. (default =
’identity’)

186 sampler_BASE

This is the default sampler for the LKJ distribution. However, blocked samplers may perform poorly
if the adaptation configuration is poorly chosen. See the comments in the RW_block section of this
documentation.

RW_lkj_corr_cholesky sampler

This sampler is designed for sampling non-conjugate LKJ correlation Cholesky factor distributions.
The sampler performs individual Metropolis-Hastings updates following a transformation to an
unconstrained scale (using the signed stickbreaking approach documented in Section 10.12 of the
Stan Language Reference Manual, version 2.27).

The RW_lkj_corr_cholesky sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scales of the
univariate normal Metropolis-Hasting proposals, to achieve a theoretically desirable accep-
tance rate for each. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the sampler will perform its adaptation procedure. (default =
200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for the multivariate normal Metropolis-Hastings
proposal covariance. If adaptive = FALSE, scale will never change. (default = 1)

Note that this sampler is likely run much more slowly than the blocked sampler for the LKJ distribu-
tion, as updating each single element will generally incur the full cost of updating all dependencies
of the entire matrix.

polyagamma sampler

The polyagamma sampler uses Pólya-gamma data augmentation to do conjugate sampling for the
parameters in the linear predictor of a logistic regression model (Polson et al., 2013), analogous
to the Albert-Chib data augmentation scheme for probit regression. This sampler is not assigned
as a default sampler by configureMCMC and so can only be used if manually added to an MCMC
configuration.

As an example, consider model code containing:

for(i in 1:n) {
logit(prob[i]) <- beta0 + beta1*x1[i] + beta2*x2[i] + u[group[i]]
y[i] ~ dbinom(prob = prob[i], size = size[i])

}
for(j in 1:num_groups)
u[j] ~ dnorm(0, sd = sigma_group)

where beta0, beta1, and beta2 are fixed effects with normal priors, u is a random effect associated
with groups of data, and group[i] gives the group index of the i-th observation, y[i]. In this model,
the parameters beta0, beta1, beta2, and all the u[j] can be jointly sampled by the polyagamma
sampler, i.e., they will be its target nodes.

After building a model (calling nimbleModel) containing the above code, one would configure the
sampler as follows:

sampler_BASE 187

MCMCconf <- configureMCMC(model)
logistic_nodes <- c("beta0", "beta1", "beta2", "u")
Optionally, remove default samplers.
MCMCconf$removeSamplers(logistic_nodes)
MCMCconf$addSampler(target = logistic_nodes, type = "polyagamma",
control = list(fixedDesignColumns=TRUE))

As shown here, the stochastic dependencies (y[i] here) of the target nodes must follow dbin or
dbern distributions. The logit transformation of their probability parameter must be a linear func-
tion (technically an affine function) of the target nodes, which themselves must have dnorm or
dmnorm priors. Zero inflation to account for structural zeroes is also supported, allowed as dis-
cussed below. The stochastic dependencies will often but not always be the observations in the
logistic regression and will be referred to as ’responses’ henceforth. Internally, the sampler draws
latent values from the Pólya-gamma distribution, one per response. These latent values are then
used to draw from the multivariate normal conditional distribution of the target nodes.

Importantly, note that because the Pólya-gamma draws are not retained when an iteration of the
sampler finishes, one generally wants to apply the sampler to all parameter nodes involved in the
linear predictor of the logistic regression, to avoid duplicative Pólya-gamma draws of the latent
values. If there are stochastic indices (e.g., if group[i] above is stochastic), the Pólya-gamma
sampler can still be used, but the stochastic nodes cannot be sampled by it and must have separate
sampler(s). It is also possible in some models that regression parameters can be split into (con-
ditionally independent) groups that can be sampled independently, e.g., if one has distinct logistic
regression specifications for different sets of responses in the model.

Sampling involves use of the design matrix. The design matrix includes one column corresponding
to each regression covariate as well as one columnar block corresponding to each random effect. In
the example above, the columns would include a vector of ones (to multiply beta0), the vectors x1
and x2, and a vector of indicators for each u[j] (with a 1 in row i if group[i] is j), resulting in
3+num_groups columns. Note that the polyagamma sampler can determine the design matrix from
the model, even when written as above such that the design matrix is not explicitly in the model
code. It is also possible to write model code for the linear prediction using matrix multiplication
and an explicit design matrix, but that is not necessary.

Often the design matrix is fixed in advance, but in some cases elements of the matrix may be
stochastic and sampled during the MCMC. That would be the case if there are missing values
(e.g., missing covariate values (declared as stochastic nodes)) or stochastic indexing (e.g., unknown
assignment of responses to clusters, as mentioned above). Note that changes in the values of any of
the beta or u[j] target nodes in the example above do not change the design matrix.

Recalculating the elements of the design matrix at every iteration is costly and will likely greatly
slow the sampler. To alleviate this, users can specify which columns of the design matrix are fixed
(non-stochastic) using the fixedDesignColumns control argument. If all columns are fixed, which
will often be the case, this argument can be specified simply as TRUE. Note that the sampler does not
determine if any or all columns are fixed, so users wishing to take advantage of the large speed gains
from having fixed columns should provide this control argument. Columns indicated as fixed will
be determined (if necessary) when the sampler is first run and retained for subsequent iterations.

By default, NIMBLE will determine the design matrix (and as discussed above will do so repeatedly
at each iteration for any columns not indicated as being fixed). If the matrix has no stochastic
elements, users may choose to provide the matrix directly to the sampler via the designMatrix
control argument. This will save time in computing the matrix initially but likely will have limited

188 sampler_BASE

benefit relative to the cost of running many iterations of MCMC and therefore can be omitted in
most cases.

The sampler allows for binomial responses with stochastic sizes. This would be the case in the
above example if the size[i] values are themselves declared as unobserved stochastic nodes and
thus are sampled by MCMC.

The sampler allows for zero inflation of the response probability in that the probability determined
by the inverse logit transformation of the linear predictor can be multipled by one or more binary
scalar nodes to produce the response probability. These binary nodes must be specified via the
dbern distribution or the dbin distribution with size equal to one. This functionality is intended for
use in cases where another part of the model introduces structural zeroes, such as in determining
occupancy in ecological occupancy models. An example would be if the above were modified by
y[i] ~ dbinom(prob = z[i] * p[i], size = size[i]), where each z[i] is either 0 or 1.

The polyagamma sampler accepts the following control list elements:

• fixedDesignColumns. Either a single logical value indicating if the design matrix is fixed
(non-stochastic) or a logical vector indicating which columns are fixed. In the latter case, the
columns must be ordered exactly as the ordering of target node elements given by model$expandNodeNames(target,
returnScalarComponents = TRUE), where target is the same as the target argument to
configureMCMC$addSampler above. (default = FALSE)

• designMatrix. The full design matrix with rows corresponding to the ordering of the responses
and columns ordered exactly as the ordering of target node elements given by model$expandNodeNames(target,
returnScalarComponents = TRUE), where target is the same as the target argument to
configureMCMC$addSampler above. If provided, all columns are assumed to be fixed, ignor-
ing the fixedDesignColumns control element.

• nonTargetNodes. Additional stochastic nodes involved in the linear predictor that are not to
be sampled as part of the sampler. This must include any nodes specifying stochastic indexes
(e.g., "group" if the group[i] values are stochastic) and any parameters considered known
or that for any reason one does not want to sample. Providing nonTargetNodes is required in
order to allow NIMBLE to check for the presence of zero inflation.

• check. A logical value indicating whether NIMBLE should check various conditions required
for validity of the sampler. This is provided for rare cases where the checking may be overly
conservative and a user is sure that the sampler is valid and wants to override the checking.
(default = TRUE)

noncentered sampler

The noncentered sampler is designed to sample the mean or standard deviation of a set of centered
random effects while also moving the random effects values to possibly allow better mixing. The
noncentered sampler deterministically shifts or scales the dependent node values to be consistent
with the proposed value of the target (the mean or the standard deviation) such that the effect is
to sample in a noncentered parameterization (Yu and Meng 2011), via an on-the-fly reparameter-
ization. This can improve mixing by updating the target node based on information in the model
nodes whose parent nodes are the dependent nodes of the target (i.e,. the "grandchild" nodes of the
target; these will often be data nodes). This comes at the extra computational cost of calculating the
logProbability of the "grandchild" nodes.

It is still necessary to have other samplers on the random effects values.

sampler_BASE 189

Mathematically, the noncentered sampler operates in one dimension of a transformed parameter
space. When sampling a mean, all random effects will be shifted by the same amount as the mean.
When sampling a standard deviation, all random effects (relative to their means) will be scaled by
the same factor as the standard deviation. Consider a model that includes the following code:

for(i in 1:n)
y[i] ~ dnorm(beta1*x[i] + u[group[i]], sd = sigma_obs)

for(j in 1:num_groups)
u[j] ~ dnorm(beta0, sd = sigma_group)

where u is a random effect associated with groups of data, and group[i] gives the group index of
the i-th observation. This model has a centered random effect, because the u[j] have the intercept
beta0 as their mean. In basic univariate sampling, updates to beta0 or to sigma_group do not
change u[j], making only small moves possible if num_groups is large. When the noncentered
sampler considers a new value for beta0, it will shift all the u[j] so that (in this case) their prior
probabilities do not change. If the noncentered sampler considers a new value for sigma_group, it
will rescale all the u[j] accordingly.

The effect of such a sampling strategy is to update beta0 and sigma_group as if the model had
been written in a different (noncentered) way. For updating beta0, it would be:

for(i in 1:n)
y[i] ~ dnorm(beta0 + beta1*x[i] + u[group[i]], sd = sigma_obs)

for(j in 1:num_groups)
u[j] ~ dnorm(0, sd = sigma_group)

For updating sigma_group, it would be:

for(i in 1:n)
y[i] ~ dnorm(beta1*x[i] + u[group[i]] * sigma_group, sd = sigma_obs)

for(j in 1:num_groups)
u[j] ~ dnorm(beta0, sd = 1)

Whether centered or noncentered parameterizations result in better sampling can depend on the
model and the data. Therefore Yu and Meng (2011) recommended an "interweaving" strategy of
using both kinds of samplers. Adding the noncentered sampler (on either the mean or standard
deviation or both) to an existing MCMC configuration for a model specified using the centered
parameterization (and with a sampler already assigned to the target node) produces an overall sam-
pling approach that is a variation on the interweaving strategy of Yu and Meng (2011). This provides
the benefits of sampling in both the centered and noncentered parameterizations in a single MCMC.

There is a higher computational cost to the noncentered sampler (or to writing the model directly
in one of the equivalent ways shown). The cost is that when updating beta0 or sigma_group, the
relevant log probabilities calculations will include (in this case) all the of y[i], i.e. the "grandchild"
nodes of beta0 or sigma_group.

The noncentered sampler is not assigned by default by configureMCMC but must be manually added.
For example:

MCMCconf <- configureMCMC(model)
MCMCconf$addSampler(target = "beta0", type = "noncentered",

190 sampler_BASE

control = list(param = "location", sampler = "RW"))
MCMCconf$addSampler(target = "sigma_group", type = "noncentered",
control = list(param = "scale", sampler = "RW"))

While the target node will generally be either the mean (location) or standard deviation (scale) of
a set of other nodes (e.g., random effects), it could in theory be used in other contexts and one can
choose whether the transformation is a shift or a scale operation. In a shift operation (e.g., when the
sampling target is a mean), the dependent nodes are set to their previous values plus the difference
between the proposed value and previous value for the target. In a scale operation (e.g., when the
sampling target is the standard deviation), the dependent nodes minus their means are multiplied
by the ratio of the proposed value to the previous value for the target and the previous value for the
target. Whether to shift or scale is determined from the param element of the control list.

The sampling algorithm for the target node can either be adaptive Metropolis random walk (which
uses NIMBLE’s RW sampler) or slice sampling (which uses NIMBLE’s slice sampler), determined
from the sampler element of the control list. In either case, the underlying sampling accounts
for the Jacobian of the deterministic shifting or scaling of the dependent nodes (in the case of
shifting, the Jacobian is equal to 1 and has no impact). When the target is the standard deviation
of normally-distributed dependent nodes, the Jacobian cancels with the prior distribution for the
dependent nodes, and the update is in effect based only on the prior for the target and the distribution
of the "grandchild" nodes.

The noncentered sampler accepts the following control list elements:

• sampler. A character string, either "RW" or "slice" specifying the type of sampler to be used
for the target node. (default = "RW")

• param. A character string, either "location" or "scale" specifying whether sampling is
done as shifting or scaling the dependent nodes. (default = "location")

CAR_normal sampler

The CAR_normal sampler operates uniquely on improper (intrinsic) Gaussian conditional autore-
gressive (CAR) nodes, those with a dcar_normal prior distribution. It internally assigns one of
three univariate samplers to each dimension of the target node: a posterior predictive, conjugate,
or RW sampler; however these component samplers are specialized to operate on dimensions of a
dcar_normal distribution.

The CAR_normal sampler accepts the following control list elements:

• carUseConjugacy. A logical argument, specifying whether to assign conjugate samplers for
conjugate components of the target node. If FALSE, a RW sampler would be assigned instead.
(default = TRUE)

• adaptive. A logical argument, specifying whether any component RW samplers should adapt
the scale (proposal standard deviation), to achieve a theoretically desirable acceptance rate.
(default = TRUE)

• adaptInterval. The interval on which to perform adaptation for any component RW sam-
plers. Every adaptInterval MCMC iterations (prior to thinning), component RW samplers
will perform an adaptation procedure. This updates the scale variable, based upon the sam-
pler’s achieved acceptance rate over the past adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation for any component RW
samplers. If adaptive = FALSE, scale will never change. (default = 1)

sampler_BASE 191

CAR_proper sampler

The CAR_proper sampler operates uniquely on proper Gaussian conditional autoregressive (CAR)
nodes, those with a dcar_proper prior distribution. It internally assigns one of three univariate
samplers to each dimension of the target node: a posterior predictive, conjugate, or RW sampler,
however these component samplers are specialized to operate on dimensions of a dcar_proper
distribution.

The CAR_proper sampler accepts the following control list elements:

• carUseConjugacy. A logical argument, specifying whether to assign conjugate samplers for
conjugate components of the target node. If FALSE, a RW sampler would be assigned instead.
(default = TRUE)

• adaptive. A logical argument, specifying whether any component RW samplers should adapt
the scale (proposal standard deviation), to achieve a theoretically desirable acceptance rate.
(default = TRUE)

• adaptInterval. The interval on which to perform adaptation for any component RW sam-
plers. Every adaptInterval MCMC iterations (prior to thinning), component RW samplers will
perform an adaptation procedure. This updates the scale variable, based upon the sampler’s
achieved acceptance rate over the past adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation for any component RW
samplers. If adaptive = FALSE, scale will never change. (default = 1)

CRP sampler

The CRP sampler is designed for fitting models involving Dirichlet process mixtures. It is exclu-
sively assigned by NIMBLE’s default MCMC configuration to nodes having the Chinese Restaurant
Process distribution, dCRP. It executes sequential sampling of each component of the node (i.e., the
cluster membership of each element being clustered). Internally, either of two samplers can be as-
signed, depending on conjugate or non-conjugate structures within the model. For conjugate and
non-conjugate model structures, updates are based on Algorithm 2 and Algorithm 8 in Neal (2000),
respectively.

• checkConjugacy. A logical argument, specifying whether to assign conjugate samplers if
valid. (default = TRUE)

• printTruncation. A logical argument, specifying whether to print a warning when the
MCMC attempts to use more clusters than the maximum number specified in the model. Only
relevant where the user has specified the maximum number of clusters to be less than the
number of observations. (default = TRUE)

CRP_concentration sampler

The CRP_concentration sampler is designed for Bayesian nonparametric mixture modeling. It is
exclusively assigned to the concentration parameter of the Dirichlet process when the model is spec-
ified using the Chinese Restaurant Process distribution, dCRP. This sampler is assigned by default by
NIMBLE’s default MCMC configuration and can only be used when the prior for the concentration
parameter is a gamma distribution. The assigned sampler is an augmented beta-gamma sampler as
discussed in Section 6 in Escobar and West (1995).

192 sampler_BASE

prior_samples sampler

The prior_samples sampler uses a provided set of numeric values (samples) to define the prior
distribution of one or more model nodes. One every MCMC iteration, the prior_samples sampler
takes value(s) from the numeric values provided, and stores these value(s) into the target model
node(s). This allows one to define the prior distribution of model parameters empirically, using a
set of numeric samples, presumably obtained previously using MCMC. The target node may be
either a single scalar node (scalar case), or a collection of model nodes.

The prior_samples sampler provides two options for selection of the value to use on each MCMC
iteration. The default behaviour is to take sequential values from the samples vector (scalar case), or
in the case of multiple dimensions, sequential rows of the samples matrix are used. The alternative
behaviour, by setting the control argument randomDraws = TRUE, will instead use random draws
from the samples vector (scalar case), or randomly selected rows of the samples matrix in the
multidimensional case.

If the default of sequential selection of values is used, and the number of MCMC iterations exceeds
the length of the samples vector (scalar case) or the number of rows of the samples matrix, then
samples will be recycled as necessary for the number of MCMC iterations. A message to this effect
is also printed at the beginning of the MCMC chain.

Logically, prior_samples samplers might want to operate first, in advance of other samplers, on
every MCMC iteration. By default, at the time of MCMC building, all prior_samples samplers are
re-ordered to appear first in the list of MCMC samplers. This behaviour can be subverted, however,
by setting nimbleOptions(MCMCorderPriorSamplesSamplersFirst = FALSE).

The prior_samples sampler can be assigned to non-stochastic model nodes (nodes which are not
assigned a prior distribution in the model). In fact, it is recommended that nodes being assigned a
prior_samples are not provided with a prior distribution in the model, and rather, that these nodes
only appear on the right-hand-side of model declaration lines. In such case that a prior_samples
sampler is assigned to a nodes with a prior distribution, the prior distribution will be overridden
by the sample values provided to the sampler; however, the node will still be a stochastic node for
other purposes, and will contribute to the model joint-density (using the sample values provided
relative to the prior distribution), will have an MCMC sampler assigned to it by default, and also
may introduce potential for confusion. In this case, a message is issued at the time of MCMC
building.

The prior_samples sampler accepts the following control list elements:

• samples. A numeric vector or matrix. When the target node is a single scalar-valued node,
samples should be a numeric vector. When the target node specifies d > 2 model dimen-
sions, samples should be a matrix containing d columns. The samples control argument is
required.

• randomDraws. A logical argument, specifying whether to use a random draw from samples
on each iteration. If samples is a matrix, then a randomly-selected row of the samples matrix
is used. When FALSE, sequential values (or sequential matrix rows) are used (default = FALSE).

posterior_predictive sampler

The posterior_predictive sampler operates only on posterior predictive stochastic nodes. A poste-
rior predictive node is a node that is not itself data and has no data nodes in its entire downstream
(descendant) dependency network. Note that such nodes play no role in inference for model pa-
rameters but have often been included in BUGS models to make predictions, including for posterior

sampler_BASE 193

predictive checks. As of version 0.13.0, NIMBLE samples model parameters without conditioning
on the posterior predictive nodes and samples conditionally from the posterior predictive nodes as
the last step of each MCMC iteration.

(Also note that NIMBLE allows posterior predictive values to be simulated independently of run-
ning MCMC, for example by writing a nimbleFunction to do so. This means that in many cases
where terminal stochastic (posterior predictive) nodes have been included in BUGS models, they
are not needed when using NIMBLE.)

The posterior_predictive sampler functions by simulating new values for all downstream (depen-
dent) nodes using their conditional distributions, as well as updating the associated model prob-
abilities. A posterior_predictive sampler will automatically be assigned to all trailing non-data
stochastic nodes in a model, or when possible, to any node at a point in the model after which all
downstream (dependent) stochastic nodes are non-data.

The posterior_predictive sampler accepts no control list arguments.

RJ_fixed_prior sampler

This sampler proposes addition/removal for variable of interest in the framework of variable se-
lection using reversible jump MCMC, with a specified prior probability of inclusion. A normal
proposal distribution is used to generate proposals for the addition of the variable. This is a spe-
cialized sampler used by configureRJ function, when the model code is written without using
indicator variables. See help{configureRJ} for details. It is not intended for direct assignment.

RJ_indicator sampler

This sampler proposes transitions of a binary indicator variable, corresponding to a variable of
interest, in the framework of variable selection using reversible jump MCMC. This is a specialized
sampler used by configureRJ function, when the model code is written using indicator variables.
See help{configureRJ} for details. It is not intended for direct assignment.

RJ_toggled sampler

This sampler operates in the framework of variable selection using reversible jump MCMC. Specif-
ically, it conditionally performs updates of the target variable of interest using the originally-
specified sampling configuration, when variable is "in the model". This is a specialized sampler
used by configureRJ when adding a reversible jump MCMC . See help{configureRJ} for de-
tails. It is not intended for direct assignment.

Author(s)

Daniel Turek

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov Chain Monte Carlo Methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269-342.

Hoffman, Matthew D., and Gelman, Andrew (2014). The No-U-Turn Sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1): 1593-
1623.

194 sampler_BASE

Escobar, M. D., and West, M. (1995). Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90(430), 577-588.

Knorr-Held, L. and Rue, H. (2003). On block updating in Markov random field models for disease
mapping. Scandinavian Journal of Statistics, 29, 597-614.

Livingstone, S. and Zanella G. (2022). The Barker proposal: combining robustness and efficiency in
gradient-based MCMC. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
84(2): 496-523.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation
of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-
1092.

Murray, I., Prescott Adams, R., and MacKay, D. J. C. (2010). Elliptical Slice Sampling. arXiv
e-prints, arXiv:1001.0175.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistics, 9(2), 249-265.

Neal, R. M. (2003). Slice Sampling. The Annals of Statistics, 31(3), 705-741.

Neal, R. M. (2011). MCMC Using Hamiltonian Dynamics. Handbook of Markov Chain Monte
Carlo, CRC Press, 2011.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of
the American Statistical Association 94(446), 590-599.

Polson, N.G., Scott, J.G., and J. Windle. (2013). Bayesian inference for logistic models us-
ing Pólya-gamma latent variables. Journal of the American Statistical Association, 108(504),
1339–1349. https://doi.org/10.1080/01621459.2013.829001

Roberts, G. O. and S. K. Sahu (1997). Updating Schemes, Correlation Structure, Blocking and Pa-
rameterization for the Gibbs Sampler. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 59(2), 291-317.

Shaby, B. and M. Wells (2011). Exploring an Adaptive Metropolis Algorithm. 2011-14. Department
of Statistics, Duke University.

Stan Development Team (2020). Stan Language Reference Manual, Version 2.22, Section 10.12.

Tibbits, M. M., Groendyke, C., Haran, M., and Liechty, J. C. (2014). Automated Factor Slice
Sampling. Journal of Computational and Graphical Statistics, 23(2), 543-563.

van Dyk, D.A. and T. Park. (2008). Partially collapsed Gibbs Samplers. Journal of the American
Statistical Association, 103(482), 790-796.

Vogrinc, J., Livingstone, S., and Zanella, G. (2023). Optimal design of the Barker proposal and
other locally balanced Metropolis–Hastings algorithms. Biometrika, 110(3): 579-595.

Yu, Y. and Meng, X. L. (2011). To center or not to center: That is not the question - An ancillarity-
sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. Journal of Computational
and Graphical Statistics, 20(3), 531–570. https://doi.org/10.1198/jcgs.2011.203main

See Also

configureMCMC addSampler buildMCMC runMCMC

setAndCalculate 195

Examples

y[1] ~ dbern() or dbinom():
mcmcConf$addSampler(target = 'y[1]', type = 'binary')

mcmcConf$addSampler(target = 'a', type = 'RW',
control = list(log = TRUE, adaptive = FALSE, scale = 3))
mcmcConf$addSampler(target = 'b', type = 'RW',
control = list(adaptive = TRUE, adaptInterval = 200))
mcmcConf$addSampler(target = 'p', type = 'RW',
control = list(reflective = TRUE))

a, b, and c all continuous-valued:
mcmcConf$addSampler(target = c('a', 'b', 'c'), type = 'RW_block')

mcmcConf$addSampler(target = 'p', type = 'RW_llFunction',
control = list(llFunction = RllFun, includesTarget = FALSE))

mcmcConf$addSampler(target = 'y[1]', type = 'slice',
control = list(adaptive = FALSE, sliceWidth = 3))
mcmcConf$addSampler(target = 'y[2]', type = 'slice',
control = list(adaptive = TRUE, sliceMaxSteps = 1))

mcmcConf$addSampler(target = 'x[1:10]', type = 'ess') ## x[1:10] ~ dmnorm()

mcmcConf$addSampler(target = 'p[1:5]', type = 'RW_dirichlet') ## p[1:5] ~ ddirch()

y[1] is a posterior predictive node:
mcmcConf$addSampler(target = 'y[1]', type = 'posterior_predictive')

setAndCalculate Creates a nimbleFunction for setting the values of one or more model
nodes, calculating the associated deterministic dependents and log-
Prob values, and returning the total sum log-probability.

Description

This nimbleFunction generator must be specialized to any model object and one or more model
nodes. A specialized instance of this nimbleFunction will set the values of the target nodes in
the specified model, calculate the associated logProbs, calculate the values of any deterministic
dependents, calculate the logProbs of any stochastic dependents, and return the sum log-probability
associated with the target nodes and all stochastic dependent nodes.

Usage

setAndCalculate(model, targetNodes)

setAndCalculateDiff(model, targetNodes)

196 setAndCalculateOne

Arguments

model An uncompiled or compiled NIMBLE model. This argument is required.

targetNodes A character vector containing the names of one or more nodes or variables in
the model. This argument is required.

Details

Calling setAndCalculate(model, targetNodes) or setAndCalculate(model, targetNodes)
will return a nimbleFunction object whose run function takes a single, required argument:

targetValues: A vector of numeric values which will be put into the target nodes in the specified
model object. The length of this numeric vector much exactly match the number of target nodes.

The difference between setAndCalculate and setAndCalculateDiff is the return value of their
run functions. In the former, run returns the sum of the log probabilities of the targetNodes with
the provided targetValues, while the latter returns the difference between that sum with the new
targetValues and the previous values in the model.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({ for(i in 1:3) { x[i] ~ dnorm(0,1); y[i] ~ dnorm(0, 1)}})
Rmodel <- nimbleModel(code)
my_setAndCalc <- setAndCalculate(Rmodel, c('x[1]', 'x[2]', 'y[1]', 'y[2]'))
lp <- my_setAndCalc$run(c(1.2, 1.4, 7.6, 8.9))

setAndCalculateOne Creates a nimbleFunction for setting the value of a scalar model node,
calculating the associated deterministic dependents and logProb val-
ues, and returning the total sum log-probability.

Description

This nimbleFunction generator must be specialized to any model object and any scalar model node.
A specialized instance of this nimbleFunction will set the value of the target node in the specified
model, calculate the associated logProb, calculate the values of any deterministic dependents, cal-
culate the logProbs of any stochastic dependents, and return the sum log-probability associated with
the target node and all stochastic dependent nodes.

Usage

setAndCalculateOne(model, targetNode)

setSize 197

Arguments

model An uncompiled or compiled NIMBLE model. This argument is required.

targetNode The character name of any scalar node in the model object. This argument is
required.

Details

Calling setAndCalculateOne(model, targetNode) will return a function with a single, required ar-
gument:

targetValue: The numeric value which will be put into the target node, in the specified model object.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({ for(i in 1:3) x[i] ~ dnorm(0, 1) })
Rmodel <- nimbleModel(code)
my_setAndCalc <- setAndCalculateOne(Rmodel, 'x[1]')
lp <- my_setAndCalc$run(2)

setSize set the size of a numeric variable in NIMBLE

Description

set the size of a numeric variable in NIMBLE. This works in R and NIMBLE, but in R it usually
has no effect.

Usage

setSize(numObj, ..., copy = TRUE, fillZeros = TRUE)

Arguments

numObj This is the object to be resized

... sizes, provided as scalars, in order, or as a single vector

copy logical indicating whether values should be preserved (in column-major order)

fillZeros logical indicating whether newly allocated space should be initialized with zeros
(in compiled code)

198 setupMargNodes

Details

Note that assigning the result of numeric, integer, logical, matrix, or array is often as good
or better than using setSize. For example, ‘x <- matrix(nrow = 5, ncol = 5)‘ is equivalent to
‘setSize(x, 5, 5)‘ but the former allows more control over initialization.

This function is part of the NIMBLE language. Its purpose is to explicitly resize a multivariate
object (vector, matrix or array), currently up to 4 dimensions. Explicit resizing is not needed when
an entire object is assigned to. For example, in Y <- A %*% B, where A and B are matrices, Y will be
resized automatically. Explicit resizing is necessary when assignment will be by indexed elements
or blocks, if the object is not already an appropriate size for the assignment. E.g. prior to Y[5:10]
<- A %*% B, one can use setSize to ensure that Y has a size (length) of at least 10.

This does work in uncompiled (R) and well as compiled execution, but in some cases it is only
necessary for compiled execution. During uncompiled execution, it may not catch bugs due to
resizing because some R objects will be dynamically resized during assignments anyway.

If preserving values in the resized object and/or initializing new values with 0 is not necessary, then
setting these arguments to FALSE will yield slightly more efficient compiled code.

Author(s)

NIMBLE development team

setupMargNodes Organize model nodes for marginalization

Description

Process model to organize nodes for marginalization (integration over latent nodes or random ef-
fects) as by Laplace approximation.

Usage

setupMargNodes(
model,
paramNodes,
randomEffectsNodes,
calcNodes,
calcNodesOther,
split = TRUE,
check = TRUE,
allowDiscreteLatent = FALSE

)

Arguments

model A nimble model such as returned by nimbleModel.

paramNodes A character vector of names of stochastic nodes that are parameters of nodes to
be marginalized over (randomEffectsNodes). See details for default.

setupMargNodes 199

randomEffectsNodes

A character vector of nodes to be marginalized over (or "integrated out"). In the
case of calculating the likelihood of a model with continuous random effects,
the nodes to be marginalized over are the random effects, hence the name of this
argument. However, one can marginalize over any nodes desired as long as they
are continuous. See details for default.

calcNodes A character vector of nodes to be calculated as the integrand for marginaliza-
tion. Typically this will include randomEffectsNodes and some data nodes. Se
details for default.

calcNodesOther A character vector of nodes to be calculated as part of the log likelihood that
are not connected to the randomEffectNodes and so are not actually part of the
marginalization. These are somewhat extraneous to the purpose of this function,
but it is convenient to handle them here because often the purpose of marginal-
ization is to calculate log likelihoods, including from "other" parts of the model.

split A logical indicating whether to split randomEffectsNodes into conditionally
independent sets that can be marginalized separately (TRUE) or to keep them all
in one set for a single marginalization calculation.

check A logical indicating whether to try to give reasonable warnings of badly formed
inputs that might be missing important nodes or include unnecessary nodes.

allowDiscreteLatent

A logical indicating whether to allow discrete latent states. (default = FALSE)

Details

This function is used by buildLaplace to organize model nodes into roles needed for setting up
the (approximate) marginalization done by Laplace approximation. It is also possible to call this
function directly and pass the resulting list (possibly modified for your needs) to buildLaplace.

Any of the input node vectors, when provided, will be processed using nodes <- model$expandNodeNames(nodes),
where nodes may be paramNodes, randomEffectsNodes, and so on. This step allows any of
the inputs to include node-name-like syntax that might contain multiple nodes. For example,
paramNodes = 'beta[1:10]' can be provided if there are actually 10 scalar parameters, ’beta[1]’
through ’beta[10]’. The actual node names in the model will be determined by the exapndNodeNames
step.

This function does not do any of the marginalization calculations. It only organizes nodes into roles
of parameters, random effects, integrand calculations, and other log likelihood calculations.

The checking done if ‘check=TRUE‘ tries to be reasonable, but it can’t cover all cases perfectly. If
it gives an unnecessary warning, simply set ‘check=FALSE‘.

If paramNodes is not provided, its default depends on what other arguments were provided. If
neither randomEffectsNodes nor calcNodes were provided, paramNodes defaults to all top-level,
stochastic nodes, excluding any posterior predictive nodes (those with no data anywhere down-
stream). These are determined by model$getNodeNames(topOnly = TRUE, stochOnly = TRUE,
includePredictive = FALSE). If randomEffectsNodes was provided, paramNodes defaults to
stochastic parents of randomEffectsNodes. In these cases, any provided calcNodes or calcNodesOther
are excluded from default paramNodes. If calcNodes but not randomEffectsNodes was provided,
then the default for randomEffectsNodes is determined first, and then paramNodes defaults to
stochastic parents of randomEffectsNodes. Finally, any stochastic parents of calcNodes (whether

200 setupMargNodes

provided or default) that are not in calcNodes are added to the default for paramNodes, but only
after paramNodes has been used to determine the defaults for randomEffectsNodes, if necessary.

Note that to obtain sensible defaults, some nodes must have been marked as data, either by the data
argument in nimbleModel or by model$setData. Otherwise, all nodes will appear to be posterior
predictive nodes, and the default paramNodes may be empty.

For purposes of buildLaplace, paramNodes does not need to (but may) include deterministic nodes
between the parameters and any calcNodes. Such deterministic nodes will be included in calcula-
tions automatically when needed.

If randomEffectsNodes is missing, the default is a bit complicated: it includes all latent nodes
that are descendants (or "downstream") of paramNodes (if provided) and are either (i) ancestors (or
"upstream") of data nodes (if calcNodes is missing), or (ii) ancestors or elements of calcNodes
(if calcNodes and paramNodes are provided), or (iii) elements of calcNodes (if calcNodes is
provided but paramNodes is missing). In all cases, discrete nodes (with warning if check=TRUE),
posterior predictive nodes and paramNodes are excluded.

randomEffectsNodes should only include stochastic nodes.

If calcNodes is missing, the default is randomEffectsNodes and their descendants to the next
stochastic nodes, excluding posterior predictive nodes. These are determined by model$getDependencies(randomEffectsNodes,
includePredictive=FALSE).

If calcNodesOther is missing, the default is all stochastic descendants of paramNodes, exclud-
ing posterior predictive nodes (from model$getDependencies(paramNodes, stochOnly=TRUE,
self=FALSE, includePosterior=FALSE)) that are not part of calcNodes.

For purposes of buildLaplace, neither calcNodes nor calcNodesOther needs to (but may) con-
tain deterministic nodes between paramNodes and calcNodes or calcNodesOther, respectively.
These will be included in calculations automatically when needed.

If split is TRUE, model$getConditionallyIndependentSets is used to determine sets of the
randomEffectsNodes that can be independently marginalized. The givenNodes are the paramNodes
and calcNodes excluding any randomEffectsNodes and their deterministic descendants. The
nodes (to be split into sets) are the randomEffectsNodes.

If split is a numeric vector, randomEffectsNodes will be split by split(randomEffectsNodes,
control$split). The last option allows arbitrary control over how randomEffectsNodes are
blocked.

If check=TRUE, then defaults for each of the four categories of nodes are created even if the cor-
responding argument was provided. Then warnings are emitted if there are any extra (potentially
unnecessary) nodes provided compared to the default or if there are any nodes in the default that
were not provided (potentially necessary). These checks are not perfect and may be simply turned
off if you are confident in your inputs.

(If randomEffectsNodes was provided but calcNodes was not provided, the default (for purposes
of check=TRUE only) for randomEffectsNodes differs from the above description. It uses stochas-
tic descendants of randomEffectsNodes in place of the "data nodes" when determining ancestors
of data nodes. And it uses item (ii) instead of (iii) in the list above.)

Value

A list is returned with elements:

• paramNodes: final processed version of paramNodes

setupOutputs 201

• randomEffectsNodes: final processed version of randomEffectsNodes

• calcNodes: final processed version of calcNodes

• calcNodesOther: final processed version of calcNodesOther

• givenNodes: Input to model$getConditionallyIndependentSets, if split=TRUE.

• randomEffectsSets: Output from model$getConditionallyIndependentSets, if split=TRUE.
This will be a list of vectors of node names. The node names in one list element can be
marginalized independently from those in other list elements. The union of the list elements
should be all of randomEffectsNodes. If split=FALSE, randomEffectsSets will be a list
with one element, simply containing randomEffectsNodes. If split is a numeric vector,
randomEffectsSets will be the result of split(randomEffectsNodes, control$split).

Author(s)

Wei Zhang, Perry de Valpine, Paul van Dam-Bates

setupOutputs Explicitly declare objects created in setup code to be preserved and
compiled as member data

Description

Normally a nimbleFunction determines what objects from setup code need to be preserved for run
code or other member functions. setupOutputs allows explicit declaration for cases when an object
created in setup code is not used in member functions.

Arguments

... An arbitrary set of names

Details

Normally any object created in setup whose name appears in run or another member function is
included in the saved results of setup code. When the nimbleFunction is compiled, such objects
will become member data of the resulting C++ class. If it is desired to force an object to become
member data even if it does not appear in a member function, declare it using setupOutputs. E.g.,
setupOutputs(a, b) declares that a and b should be preserved.

The setupOutputs line will be removed from the setup code. It is really a marker during nimble-
Function creation of what should be preserved.

202 simNodes

simNodes Basic nimbleFunctions for calculate, simulate, and getLogProb with a
set of nodes

Description

simulate, calculate, or get existing log probabilities for the current values in a NIMBLE model

Usage

simNodes(model, nodes)

calcNodes(model, nodes)

getLogProbNodes(model, nodes)

Arguments

model A NIMBLE model

nodes A set of nodes. If none are provided, default is all model$getNodeNames()

Details

These are basic nimbleFunctions that take a model and set of nodes and return a function that will
call calculate, simulate, or getLogProb on those nodes. Each is equivalent to a direct call from
R, but in nimbleFunction form they can be be compiled. For example, myCalc <- calcNodes(model,
nodes); ans <- myCalc() is equivalent to ans <- model$calculate(nodes), but one can also do
CmyCalc <- compileNimble(myCalc) to get a faster version. Note that this will often be much
faster than using ‘calculate‘ from R with a compiled model, such as compiled_model$calculate(nodes)
because of overhead in running ‘calculate‘ from R.

In nimbleFunctions, one would generally use model$calculate(nodes) in the run-time code (and
similarly for ‘simulate‘ and ‘getLogProb‘).

Author(s)

Perry de Valpine

simNodesMV 203

simNodesMV Basic nimbleFunctions for using a NIMBLE model with sets of stored
values

Description

simulate, calculate, or get the existing log probabilities for values in a modelValues object using a
NIMBLE model

Usage

simNodesMV(model, mv, nodes)

calcNodesMV(model, mv, nodes)

getLogProbNodesMV(model, mv, nodes)

Arguments

model A nimble model.

mv A modelValues object in which multiple sets of model variables and their cor-
responding logProb values are or will be saved. mv must include the nodes pro-
vided

nodes A set of nodes. If none are provided, default is all model$getNodeNames()

Details

simNodesMV simulates values in the given nodes and saves them in mv. calcNodesMV calculates
these nodes for each row of mv and returns a vector of the total log probabilities (densities) for each
row. getLogProbNodesMV is like calcNodesMV without actually doing the calculations.

Each of these will expand variables or index blocks and topologically sort them so that each node’s
parent nodes are processed before itself.

getLogProbMV should be used carefully. It is generally for situations where the logProb values are
guaranteed to have already been calculated, and all that is needed is to query them. The risk is that
a program may have changed the values in the nodes, in which case getLogProbMV would collect
logProb values that are out of date with the node values.

Value

from simNodesMV: NULL. from calcNodesMV and getLogProbMV: a vector of the sum of log prob-
abilities (densities) from any stochastic nodes in nodes.

Run time arguments

• m. (simNodesMV only). Number of simulations requested.

• saveLP. (calcNodesMVonly). Whether to save the logProb values in mv. Should be given as
TRUE unless there is a good reason not to.

204 StickBreakingFunction

Author(s)

Clifford Anderson-Bergman

Examples

code <- nimbleCode({
for(i in 1:5)
x[i] ~ dnorm(0,1)
})

myModel <- nimbleModel(code)
myMV <- modelValues(myModel)

Rsim <- simNodesMV(myModel, myMV)
Rcalc <- calcNodesMV(myModel, myMV)
Rglp <- getLogProbNodesMV(myModel, myMV)
Not run:

cModel <- compileNimble(myModel)
Csim <- compileNimble(Rsim, project = myModel)
Ccalc <- compileNimble(Rcalc, project = myModel)
Cglp <- compileNimble(Rglp, project = myModel)
Csim$run(10)
Ccalc$run(saveLP = TRUE)
Cglp$run() #Gives identical answers to Ccalc because logProbs were saved
Csim$run(10)
Ccalc$run(saveLP = FALSE)
Cglp$run() #Gives wrong answers because logProbs were not saved
result <- as.matrix(Csim$mv)

End(Not run)

singleVarAccessClass-class

Class singleVarAccessClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

StickBreakingFunction The Stick Breaking Function

Description

Computes probabilities based on stick breaking construction.

summaryLaplace 205

Usage

stick_breaking(z, log = 0)

Arguments

z vector argument.

log logical; if TRUE, weights are returned on the log scale.

Details

The stick breaking function produces a vector of probabilities that add up to one, based on a series
of individual probabilities in z, which define the breaking points relative to the remaining stick
length. The first element of z determines the first probability based on breaking a proportion z[1]
from a stick of length one. The second element of z determines the second probability based on
breaking a proportion z[2] from the remaining stick (of length 1-z[1]), and so forth. Each element
of z should be in (0, 1). The returned vector has length equal to the length of z plus 1. If z[k] is
equal to 1 for any k, then the returned vector has length smaller than z. If one of the components is
smaller than 0 or greater than 1, NaNs are returned.

Author(s)

Claudia Wehrhahn

References

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639-650.

Examples

z <- rbeta(5, 1, 1)
stick_breaking(z)

Not run:
cstick_breaking <- compileNimble(stick_breaking)
cstick_breaking(z)

End(Not run)

summaryLaplace Summarize results from Laplace or adaptive Gauss-Hermite quadra-
ture approximation

Description

Process the results of the ‘findMLE‘ method of a nimble Laplace or AGHQ approximation into a
more useful format.

206 summaryLaplace

Usage

summaryLaplace(
laplace,
MLEoutput,
originalScale = TRUE,
randomEffectsStdError = TRUE,
jointCovariance = FALSE

)

summaryAGHQ(
AGHQ,
MLEoutput,
originalScale = TRUE,
randomEffectsStdError = TRUE,
jointCovariance = FALSE

)

Arguments

laplace The Laplace approximation object, typically the compiled one. This would be
the result of compiling an object returned from ‘buildLaplace‘.

MLEoutput The maximum likelihood estimate using Laplace or AGHQ, returned from e.g.
‘approx$findMLE(...)‘, where approx is the algorithm object returned by ‘build-
Laplace‘ or ‘buildAGHQ‘, or (more typically) the result of compiling that object
with ‘compileNimble‘. See ‘help(buildLaplace)‘ for more information.

originalScale Should results be returned using the original parameterization in the model code
(TRUE) or the potentially transformed parameterization used internally by the
Laplace approximation (FALSE). Transformations are used for any parameters
and/or random effects that have constrained ranges of valid values, so that in the
transformed parameter space there are no constraints. (default = TRUE)

randomEffectsStdError

If TRUE, calculate the standard error of the estimates of random effects values.
(default = TRUE)

jointCovariance

If TRUE, calculate the joint covariance matrix of the parameters and random
effects together. If FALSE, calculate the covariance matrix of the parameters.
(default = FALSE)

AGHQ Same as laplace. Note that ‘buildLaplace‘ and ‘buildAGHQ‘ create the same
kind of algorithm object that can be used interchangeably. ‘buildLaplace‘ simply
sets the number of quadrature points (‘nQuad‘) to 1 to achieve Laplace approx-
imation as a special case of AGHQ.

Details

The numbers obtained by this function can be obtained more directly by ‘approx$summary(...)‘.
The added benefit of ‘summaryLaplace‘ is to arrange the results into data frames (for parameters
and random effects), with row names for the model nodes, and also adding row and column names
to the covariance matrix.

svdNimbleList 207

Value

A list with data frames ‘params‘ and ‘randomEffects‘, each with columns for ‘estimate‘ and (pos-
sibly) ‘se‘ (standard error) and row names for model nodes, a matrix ‘vcov‘ with the covariance
matrix with row and column names, and ‘originalScale‘ with the input value of ‘originalScale‘ so it
is recorded for later use if wanted.

svdNimbleList svdNimbleList definition

Description

nimbleList definition for the type of nimbleList returned by nimSvd.

Usage

svdNimbleList

Format

An object of class list of length 1.

Author(s)

NIMBLE development team

See Also

nimSvd

t The t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribution with
df degrees of freedom, allowing non-zero location, mu, and non-unit scale, sigma

Usage

dt_nonstandard(x, df = 1, mu = 0, sigma = 1, log = FALSE)

rt_nonstandard(n, df = 1, mu = 0, sigma = 1)

pt_nonstandard(q, df = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

qt_nonstandard(p, df = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

208 t

Arguments

x vector of values.

df vector of degrees of freedom values.

mu vector of location values.

sigma vector of scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dt_nonstandard gives the density, pt_nonstandard gives the distribution function, qt_nonstandard
gives the quantile function, and rt_nonstandard generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rt_nonstandard(50, df = 1, mu = 5, sigma = 1)
dt_nonstandard(x, 3, 5, 1)

testBUGSmodel 209

testBUGSmodel Tests BUGS examples in the NIMBLE system

Description

testBUGSmodel builds a BUGS model in the NIMBLE system and simulates from the model, com-
paring the values of the nodes and their log probabilities in the uncompiled and compiled versions
of the model

Usage

testBUGSmodel(
example = NULL,
dir = NULL,
model = NULL,
data = NULL,
inits = NULL,
useInits = TRUE,
expectModelWarning = FALSE,
debug = FALSE,
verbose = nimbleOptions("verbose")

)

Arguments

example (optional) example character vector indicating name of BUGS example to test;
can be null if model is provided

dir (optional) character vector indicating directory in which files are contained, by
default the classic-bugs directory if the installed package is used; to use the
current working directory, set this to ""

model (optional) one of (1) a character string giving the file name containing the BUGS
model code, (2) an R function whose body is the BUGS model code, or (3) the
output of nimbleCode. If a file name, the file can contain a ’var’ block and ’data’
block in the manner of the JAGS versions of the BUGS examples but should not
contain references to other input data files nor a const block. The ’.bug’ or ’.txt’
extension can be excluded.

data (optional) one of (1) character string giving the file name for an R file provid-
ing the input constants and data as R code [assigning individual objects or as a
named list] or (2) a named list providing the input constants and data. If nei-
ther is provided, the function will look for a file named example-data including
extensions .R, .r, or .txt.

inits (optional) (1) character string giving the file name for an R file providing the ini-
tial values for parameters as R code [assigning individual objects or as a named
list] or (2) a named list providing the values. If neither is provided, the function
will look for a file named example-init or example-inits including extensions
.R, .r, or .txt.

210 valueInCompiledNimbleFunction

useInits boolean indicating whether to test model with initial values provided via inits.
expectModelWarning

boolean indicating whether nimbleModel is expected to produce a warning or
character string giving part of expected warning.

debug logical indicating whether to put the user in a browser for debugging when
testBUGSmodel calls readBUGSmodel. Intended for developer use.

verbose logical indicating whether to print additional logging information

Details

Note that testing without initial values may cause warnings when parameters are sampled from
improper or fat-tailed distributions

Author(s)

Christopher Paciorek

Examples

Not run:
testBUGSmodel('pump')

End(Not run)

valueInCompiledNimbleFunction

get or set value of member data from a compiled nimbleFunction using
a multi-interface

Description

Most nimbleFunctions written for direct user interaction allow standard R-object-like access to
member data using $ or `[[`. However, sometimes compiled nimbleFunctions contained within
other compiled nimbleFunctions are interfaced with a light-weight system called a multi-interface.
valueInCompiledNimbleFunction provides a way to get or set values in such cases.

Usage

valueInCompiledNimbleFunction(cnf, name, value)

Arguments

cnf Compiled nimbleFunction object

name Name of the member data

value If provided, the value to assign to the member data. If omitted, the value of the
member data is returned.

values 211

Details

The member data of a nimbleFunction are the objects created in setup code that are used in run
code or other member functions.

Whether multi-interfaces are used for nested nimbleFunctions is controlled by the buildInterfacesForCompiledNestedNimbleFunctions
option in nimbleOptions.

To see an example of a multi-interface, see samplerFunctions in a compiled MCMC interface
object.

Author(s)

Perry de Valpine

values Access or set values for a set of nodes in a model

Description

Get or set values for a set of nodes in a model

Usage

values(model, nodes, accessorIndex)

values(model, nodes, accessorIndex) <- value

Arguments

model a NIMBLE model object, either compiled or uncompiled
nodes a vector of node names, allowing index blocks that will be expanded
accessorIndex For internal NIMBLE use only
value value to set the node(s) to

Details

Access or set values for a set of nodes in a NIMBLE model.

Calling values(model, nodes) returns a vector of the concatenation of values from the nodes re-
quested P <- values(model, nodes) is a newer syntax for getValues(P, model, values), which
still works and modifies P in the calling environment.

Calling values(model, nodes) <- P sets the value of the nodes in the model, in sequential order
from the vector P.

In both uses, when requested nodes are from matrices or arrays, the values will be handled following
column-wise order.

The older function getValues(P, model, nodes) is equivalent to P <- values(model, nodes),
and the older function setValues(P, model, nodes) is equivalent to values(model, nodes) <-
P

These functions work in R and in NIMBLE run-time code that can be compiled.

212 waic

Value

A vector of values concatenated from the provided nodes in the model

Author(s)

NIMBLE development team

waic Using WAIC

Description

Details of the WAIC measure for comparing models. NIMBLE implements an online WAIC algo-
rithm, computed during the course of the MCMC iterations.

Details

To obtain WAIC, set WAIC = TRUE in nimbleMCMC. If using a more customized workflow, set
enableWAIC = TRUE in configureMCMC or (if skipping configureMCMC) in buildMCMC, followed
by setting WAIC = TRUE in runMCMC, if using runMCMC to manage sample generation.

By default, NIMBLE calculates WAIC using an online algorithm that updates required summary
statistics at each post-burnin iteration of the MCMC.

One can also use calculateWAIC to run an offline version of the WAIC algorithm after all MCMC
sampling has been done. This allows calculation of WAIC from a matrix (or dataframe) of posterior
samples and also retains compatibility with WAIC in versions of NIMBLE before 0.12.0. However,
the offline algorithm is less flexible than the online algorithm and only provides conditional WAIC
without the ability to group data points. See help(calculateWAIC) for details.

controlWAIC list

The controlWAIC argument is a list that controls the behavior of the WAIC algorithm and is passed
to either configureMCMC or (if not using configureMCMC) buildMCMC. One can supply any of the
following optional components:

online: Logical value indicating whether to calculate WAIC during the course of the MCMC.
Default is TRUE and setting to FALSE is primarily for backwards compatibility to allow use of the
old calculateWAIC method that calculates WAIC from monitored values after the MCMC finishes.

dataGroups: Optional list specifying grouping of data nodes, one element per group, with each
list element containing the node names for the data nodes in that group. If provided, the predictive
density values computed will be the joint density values, one joint density per group. Defaults to
one data node per ’group’. See details.

marginalizeNodes: Optional set of nodes (presumably latent nodes) over which to marginalize
to compute marginal WAIC (i.e., WAIC based on a marginal likelihood), rather than the default
conditional WAIC (i.e., WAIC conditioning on all parent nodes of the data nodes). See details.

niterMarginal: Number of Monte Carlo iterations to use when marginalizing (default is 1000).

waic 213

convergenceSet: Optional vector of numbers between 0 and 1 that specify a set of shorter Monte
Carlo simulations for marginal WAIC calculation as fractions of the full (niterMarginal) Monte
Carlo simulation. If not provided, NIMBLE will use 0.25, 0.50, and 0.75. NIMBLE will report the
WAIC, lppd, and pWAIC that would have been obtained for these smaller Monte Carlo simulations,
allowing assessment of the number of Monte Carlo samples needed for stable calculation of WAIC.

thin: Logical value for specifying whether to do WAIC calculations only on thinned samples
(default is FALSE). Likely only useful for reducing computation when using marginal WAIC.

nburnin_extra: Additional number of pre-thinning MCMC iterations to discard before calculating
online WAIC. This number is discarded in addition to the usual MCMC burnin, nburnin. The
purpose of this option is to allow a user to retain some samples for inspection without having those
samples used for online WAIC calculation (default = 0).

Extracting WAIC

The calculated WAIC and related quantities can be obtained in various ways depending on how the
MCMC is run. If using nimbleMCMC and setting WAIC = TRUE, see the WAIC component of the output
list. If using runMCMC and setting WAIC = TRUE, either see the WAIC component of the output list or
use the getWAIC method of the MCMC object (in the latter case WAIC = TRUE is not required). If
using the run method of the MCMC object, use the getWAIC method of the MCMC object.

The output of running WAIC (unless one sets online = FALSE) is a list containing the following
components:

WAIC: The computed WAIC, on the deviance scale. Smaller values are better when comparing
WAIC for two models.

lppd: The log predictive density component of WAIC.

pWAIC: The pWAIC estimate of the effective number of parameters, computed using the pWAIC2
method of Gelman et al. (2014).

To get further information, one can use the getWAICdetails method of the MCMC object. The
result of running getWAICdetails is a list containing the following components:

marginal: Logical value indicating whether marginal (TRUE) or conditional (FALSE) WAIC was
calculated.

niterMarginal: Number of Monte Carlo iterations used in computing marginal likelihoods if using
marginal WAIC.

thin: Whether WAIC was calculated based only on thinned samples.

online: Whether WAIC was calculated during MCMC sampling.

nburnin_extra: Number of additional iterations discarded as burnin, in addition to original MCMC
burnin.

WAIC_partialMC, lppd_partialMC, pWAIC_partialMC: The computed marginal WAIC, lppd, and
pWAIC based on fewer Monte Carlo simulations, for use in assessing the sensitivity of the WAIC
calculation to the number of Monte Carlo iterations.

niterMarginal_partialMC: Number of Monte Carlo iterations used for the values in WAIC_partialMC,
lppd_partialMC, pWAIC_partialMC.

WAIC_elements, lppd_elements, pWAIC_elements: Vectors of individual WAIC, lppd, and pWAIC
values, one element per data node (or group of nodes in the case of specifying dataGroups). Of use
in computing the standard error of the difference in WAIC between two models, following Vehtari
et al. (2017).

214 waic

Online WAIC

As of version 0.12.0, NIMBLE provides enhanced WAIC functionality, with user control over
whether to use conditional or marginal versions of WAIC and whether to group data nodes. In
addition, users are no longer required to carefully choose MCMC monitors. WAIC by default is
now calculated in an online manner (updating the required summary statistics at each MCMC iter-
ation), using all post-burnin samples. The WAIC (Watanabe, 2010) is calculated from Equations 5,
12, and 13 in Gelman et al. (2014) (i.e., using ’pWAIC2’).

Note that there is not a unique value of WAIC for a model. By default, WAIC is calculated condi-
tional on the parent nodes of the data nodes, and the density values used are the individual density
values of the data nodes. However, by modifying the marginalizeNodes and dataGroups elements
of the control list, users can request a marginal WAIC (using a marginal likelihood that integrates
over user-specified latent nodes) and/or a WAIC based on grouping observations (e.g., all observa-
tions in a cluster) to use joint density values. See the MCMC Chapter of the NIMBLE User Manual
for more details.

For more detail on the use of different predictive distributions, see Section 2.5 from Gelman et al.
(2014) or Ariyo et al. (2019).

Note that based on a limited set of simulation experiments in Hug and Paciorek (2021) our tentative
recommendation is that users only use marginal WAIC if also using grouping.

Author(s)

Joshua Hug and Christopher Paciorek

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

Ariyo, O., Quintero, A., Munoz, J., Verbeke, G. and Lesaffre, E. (2019). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics 47: 890-913.

Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27: 1413-1432.

Hug, J.E. and Paciorek, C.J. (2021). A numerically stable online implementation and exploration of
WAIC through variations of the predictive density, using NIMBLE. arXiv e-print <arXiv:2106.13359>.

See Also

calculateWAIC configureMCMC buildMCMC runMCMC nimbleMCMC

Examples

code <- nimbleCode({
for(j in 1:J) {
for(i in 1:n)

y[j, i] ~ dnorm(mu[j], sd = sigma)

https://r-nimble.org/html_manual/cha-mcmc.html

waicDetailsNimbleList 215

mu[j] ~ dnorm(mu0, sd = tau)
}
sigma ~ dunif(0, 10)
tau ~ dunif(0, 10)

})
J <- 5
n <- 10
groups <- paste0('y[', 1:J, ', 1:', n, ']')
y <- matrix(rnorm(J*n), J, n)
Rmodel <- nimbleModel(code, constants = list(J = J, n = n), data = list(y = y),

inits = list(tau = 1, sigma = 1))

Various versions of WAIC available via online calculation.
Conditional WAIC without data grouping:
conf <- configureMCMC(Rmodel, enableWAIC = TRUE)
Conditional WAIC with data grouping
conf <- configureMCMC(Rmodel, enableWAIC = TRUE, controlWAIC = list(dataGroups = groups))
Marginal WAIC with data grouping:
conf <- configureMCMC(Rmodel, enableWAIC = TRUE, controlWAIC =

list(dataGroups = groups, marginalizeNodes = 'mu'))
Not run:
Rmcmc <- buildMCMC(conf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
output <- runMCMC(Cmcmc, niter = 1000, WAIC = TRUE)
output$WAIC # direct access
Alternatively call via the `getWAIC` method; this doesn't require setting
`waic=TRUE` in `runMCMC`
Cmcmc$getWAIC()
Cmcmc$getWAICdetails()

End(Not run)

waicDetailsNimbleList waicDetailsNimbleList definition

Description

waicDetailsNimbleList definition for the nimbleList type returned by WAIC computation.

Usage

waicDetailsNimbleList

Format

An object of class list of length 1.

Details

See help(waic) for details on the elements of the list.

216 Wishart

Author(s)

NIMBLE development team

waicNimbleList waicNimbleList definition

Description

waicNimbleList definition for the nimbleList type returned by WAIC computation.

Usage

waicNimbleList

Format

An object of class list of length 1.

Details

See help(waic) for details on the elements of the list.

Author(s)

NIMBLE development team

Wishart The Wishart Distribution

Description

Density and random generation for the Wishart distribution, using the Cholesky factor of either the
scale matrix or the rate matrix.

Usage

dwish_chol(x, cholesky, df, scale_param = TRUE, log = FALSE)

rwish_chol(n = 1, cholesky, df, scale_param = TRUE)

Wishart 217

Arguments

x vector of values.

cholesky upper-triangular Cholesky factor of either the scale matrix (when scale_param
is TRUE) or rate matrix (otherwise).

df degrees of freedom.

scale_param logical; if TRUE the Cholesky factor is that of the scale matrix; otherwise, of
the rate matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The rate matrix as
used here is defined as the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dwish_chol gives the density and rwish_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

df <- 40
ch <- chol(matrix(c(1, .7, .7, 1), 2))
x <- rwish_chol(1, ch, df = df)
dwish_chol(x, ch, df = df)

218 withNimbleOptions

withNimbleOptions Temporarily set some NIMBLE options.

Description

Temporarily set some NIMBLE options.

Usage

withNimbleOptions(options, expr)

Arguments

options a list of options suitable for nimbleOptions.

expr an expression or statement to evaluate.

Value

expr as evaluated with given options.

Examples

Not run:
if (!(getNimbleOption('showCompilerOutput') == FALSE)) stop()
nf <- nimbleFunction(run = function(){ return(0); returnType(double()) })
cnf <- withNimbleOptions(list(showCompilerOutput = TRUE), {

if (!(getNimbleOption('showCompilerOutput') == TRUE)) stop()
compileNimble(nf)

})
if (!(getNimbleOption('showCompilerOutput') == FALSE)) stop()

End(Not run)

Index

∗ datasets
ADNimbleList, 6
eigenNimbleList, 67
optimControlNimbleList, 152
optimResultNimbleList, 153
svdNimbleList, 207
waicDetailsNimbleList, 215
waicNimbleList, 216

[,CmodelValues-method
(modelValuesBaseClass-class),
107

[,CmodelValues-method,ANY,ANY
(modelValuesBaseClass-class),
107

[,CmodelValues-method,character,missing
(modelValuesBaseClass-class),
107

[,CmodelValues-method,character,missing,ANY-method
(modelValuesBaseClass-class),
107

[,distributionsClass-method
(nimble-internal), 114

[,modelValuesBaseClass-method
(modelValuesBaseClass-class),
107

[,numberedModelValuesAccessors-method
(nimble-internal), 114

[,numberedObjects-method
(nimble-internal), 114

[<-,CmodelValues-method
(modelValuesBaseClass-class),
107

[<-,modelValuesBaseClass-method
(modelValuesBaseClass-class),
107

[<-,numberedModelValuesAccessors-method
(nimble-internal), 114

[<-,numberedObjects-method
(nimble-internal), 114

[[,CNumericList-method
(nimble-internal), 114

[[,CmodelValues-method
(modelValuesBaseClass-class),
107

[[,RNumericList-method
(nimble-internal), 114

[[,conjugacyRelationshipsClass-method
(nimble-internal), 114

[[,distributionsClass-method
(nimble-internal), 114

[[,modelBaseClass-method
(modelBaseClass-class), 97

[[,nimPointerList-method
(nimble-internal), 114

[[<-,CNumericList-method
(nimble-internal), 114

[[<-,CmodelValues-method
(modelValuesBaseClass-class),
107

[[<-,RNumericList-method
(nimble-internal), 114

[[<-,modelBaseClass-method
(modelBaseClass-class), 97

[[<-,nimPointerList-method
(nimble-internal), 114

[[<-,nimbleFunctionList-method
(nimble-internal), 114

AD (nimDerivs), 135
ADbreak, 6
addMonitors (MCMCconf-class), 90
addMonitors2 (MCMCconf-class), 90
addSampler, 194
addSampler (MCMCconf-class), 90
ADNimbleList, 6
ADproxyModelClass

(ADproxyModelClass-class), 7
ADproxyModelClass-class, 7
AF_slice (sampler_BASE), 174

219

220 INDEX

AGHQ (buildLaplace), 15
AGHQuad (buildLaplace), 15
AGHQuad_params (nimble-internal), 114
AGHQuad_summary (nimble-internal), 114
all (nimble-R-functions), 115
any (nimble-R-functions), 115
any_na, 7
any_nan (any_na), 7
array, 141
array (nimMatrix), 140
as.carAdjacency, 8
as.carCM, 9
as.list.modelValuesBaseClass-Class

(nimble-internal), 114
as.matrix.modelValuesBaseClass-Class

(nimble-internal), 114
asCol (asRow), 10
asRow, 10
autoBlock, 10, 54
autoBlockClass-Class (nimble-internal),

114

barker (sampler_BASE), 174
besselK (nimble-math), 115
binary (sampler_BASE), 174
BUGScontextClass-Class

(nimble-internal), 114
BUGSdeclClass (BUGSdeclClass-class), 12
BUGSdeclClass-class, 12
BUGSsingleContextClass-Class

(nimble-internal), 114
buildAGHQ, 170
buildAGHQ (buildLaplace), 15
buildAGHQGrid, 12
buildAuxiliaryFilter, 14
buildBootstrapFilter, 14
buildEnsembleKF, 15
buildIteratedFilter2, 15
buildLaplace, 15, 155
buildLiuWestFilter, 25
buildMCEM, 26
buildMCMC, 33, 38, 54, 78, 90, 126, 173, 194,

214
buildWAIC (waic), 212

c (nimble-R-functions), 115
calc_dcatConjugacyContributions

(nimble-internal), 114

calc_dmnormAltParams (nimble-internal),
114

calc_dmnormConjugacyContributions
(nimble-internal), 114

calc_dwishAltParams (nimble-internal),
114

calcAdaptationFactor (nimble-internal),
114

calcNodes (simNodes), 202
calcNodesMV (simNodesMV), 203
calculate, 128, 159
calculate (nodeFunctions), 150
calculateDiff (nodeFunctions), 150
calculateWAIC, 36, 214
CAR-Normal, 38, 42
CAR-Proper, 40, 41
CAR_calcC (nimble-internal), 114
CAR_calcCmatrix (nimble-internal), 114
CAR_calcEVs2 (nimble-internal), 114
CAR_calcEVs3 (nimble-internal), 114
CAR_calcM (nimble-internal), 114
CAR_calcNumIslands, 46
carBounds, 43, 45
carMaxBound, 44, 44, 45
carMinBound, 44, 45, 45
cat, 133, 148
cat (nimCat), 132
Categorical, 46
categorical (sampler_BASE), 174
cc_getNodesInExpr (nimble-internal), 114
checkConjugacy (modelBaseClass-class),

97
checkInterrupt, 47
ChineseRestaurantProcess, 48
clearCompiled, 49
cloglog (nimble-math), 115
CmodelBaseClass

(CmodelBaseClass-class), 49
CmodelBaseClass-class, 49
CmultiNimbleFunctionClass-Class

(nimble-internal), 114
CmultiNimbleListClass-Class

(nimble-internal), 114
CmultiNimbleObjClass-Class

(nimble-internal), 114
CnimbleFunctionBase

(CnimbleFunctionBase-class), 50
CnimbleFunctionBase-class, 50

INDEX 221

codeBlockClass (codeBlockClass-class),
50

codeBlockClass-class, 50
compileNimble, 17, 50
configureMCMC, 35, 38, 52, 54, 56, 78, 90, 97,

126, 173, 194, 214
configureRJ, 54
conjugacyClass-Class (nimble-internal),

114
conjugacyRelationshipsClass-Class

(nimble-internal), 114
Constraint, 58
copy (nimCopy), 133
copyExprClass-Class (nimble-internal),

114
cppBUGSmodelClass-Class

(nimble-internal), 114
cppCodeFileClass-Class

(nimble-internal), 114
cppCPPfileClass-Class

(nimble-internal), 114
cppHfileClass-Class (nimble-internal),

114
cppModelValuesClass-Class

(nimble-internal), 114
cppNamedObjectsClass-Class

(nimble-internal), 114
cppNimbleClassClass-Class

(nimble-internal), 114
cppNimbleFunctionClass-Class

(nimble-internal), 114
cppNimbleListClass-Class

(nimble-internal), 114
cppProjectClass-Class

(nimble-internal), 114
cppVirtualNimbleFunctionClass-Class

(nimble-internal), 114
crossLevel (sampler_BASE), 174
CRP (sampler_BASE), 174
CRP_concentration (sampler_BASE), 174
cube (nimble-math), 115

dcar_normal (CAR-Normal), 38
dcar_proper (CAR-Proper), 41
dcat (Categorical), 46
dconstraint (Constraint), 58
dCRP (ChineseRestaurantProcess), 48
ddexp (Double-Exponential), 65
ddirch (Dirichlet), 62

decide, 59
decideAndJump, 60
declare, 61
dependentClass-Class (nimble-internal),

114
deregisterDistributions, 62
derivs (nimDerivs), 135
dexp_nimble (Exponential), 67
dflat (flat), 69
dhalfflat (flat), 69
diag (nimble-R-functions), 115
dim (nimDim), 136
dinterval (Interval), 81
dinvgamma (Inverse-Gamma), 82
dinvwish_chol (Inverse-Wishart), 84
Dirichlet, 62
dirichlet (Dirichlet), 62
distClass-Class (nimble-internal), 114
distributionInfo, 63
Distributions, 40, 42, 47, 58, 63, 67, 68, 70,

82, 83, 85, 87, 110–112, 208, 217
distributionsClass-Class

(nimble-internal), 114
dlkj (LKJ), 86
dlkj_corr_cholesky (LKJ), 86
dmnorm_chol (MultivariateNormal), 111
dmulti (Multinomial), 109
dmvt_chol (Multivariate-t), 110
Double-Exponential, 65
DPmeasure (sampler_BASE), 174
dsqrtinvgamma (nimble-internal), 114
dt_nonstandard (t), 207
dwish_chol (Wishart), 216

eigen (nimEigen), 137
eigenize_nimbleNullaryClass-Class

(nimble-internal), 114
eigenNimbleList, 67
enableWAIC (waic), 212
expandNodeNames (modelBaseClass-class),

97
expit (nimble-math), 115
Exponential, 67
exprClass-Class (nimble-internal), 114
exprTypeInfoClass-Class

(nimble-internal), 114
extractControlElement, 69

findMethodsInExprClass-Class

222 INDEX

(nimble-internal), 114
flat, 69

gamma, 83
getBound, 70, 87
getBUGSexampleDir, 71
getCode (modelBaseClass-class), 97
getConditionallyIndependentSets, 72
getConstants (modelBaseClass-class), 97
getDefinition, 73
getDependencies, 128
getDependencies (modelBaseClass-class),

97
getDependenciesList

(modelBaseClass-class), 97
getDimension (modelBaseClass-class), 97
getDistribution (modelBaseClass-class),

97
getDistributionInfo (distributionInfo),

63
getDownstream (modelBaseClass-class), 97
getLogProb (nodeFunctions), 150
getLogProbNodes (simNodes), 202
getLogProbNodesMV (simNodesMV), 203
getMacroInits (modelBaseClass-class), 97
getMacroParameters, 74
getMonitors (MCMCconf-class), 90
getMonitors2 (MCMCconf-class), 90
getNimbleOption, 75
getNimbleProject (nimble-internal), 114
getNodeFunctionIndexedInfo

(nimble-internal), 114
getNodeNames (modelBaseClass-class), 97
getParam, 76, 89
getParamNames (distributionInfo), 63
getParents (modelBaseClass-class), 97
getSamplerExecutionOrder

(MCMCconf-class), 90
getSamplers (MCMCconf-class), 90
getSamplesDPmeasure, 77
getsize, 79
getType (distributionInfo), 63
getVarNames (modelBaseClass-class), 97
getWAIC (waic), 212
getWAICdetails (waic), 212

halfflat (flat), 69

icloglog (nimble-math), 115

identityMatrix, 79
ilogit (nimble-math), 115
indexedNodeInfoTableClass-Class

(nimble-internal), 114
initializeInfo (modelBaseClass-class),

97
initializeModel, 80, 105
inprod (nimble-math), 115
integer, 143
integer (nimNumeric), 142
integrate, 138, 139
integrate (nimIntegrate), 138
Interval, 81
inverse (nimble-math), 115
Inverse-Gamma, 82
Inverse-Wishart, 84
inverse-wishart (Inverse-Wishart), 84
iprobit (nimble-math), 115
is.Cmodel (nimble-internal), 114
is.Cnf (nimble-internal), 114
is.model (nimble-internal), 114
is.na (nimble-R-functions), 115
is.nan (nimble-R-functions), 115
is.nf, 85
is.nfGenerator (nimble-internal), 114
is.nl, 86
is.Rmodel (nimble-internal), 114
isBinary (modelBaseClass-class), 97
isData (modelBaseClass-class), 97
isDeterm (modelBaseClass-class), 97
isDiscrete (modelBaseClass-class), 97
isEndNode (modelBaseClass-class), 97
isMultivariate (modelBaseClass-class),

97
isStoch (modelBaseClass-class), 97
isTruncated (modelBaseClass-class), 97
isUnivariate (modelBaseClass-class), 97
isUserDefined (distributionInfo), 63

keywordInfoClass-Class
(nimble-internal), 114

Laplace (buildLaplace), 15
laplace (buildLaplace), 15
length (nimble-R-functions), 115
LKJ, 86
lkj (LKJ), 86
lkj_corr (LKJ), 86
lkj_corr_cholesky (LKJ), 86

INDEX 223

logdet (nimble-math), 115
logfact (nimble-math), 115
loggam (nimble-math), 115
logical, 143
logical (nimNumeric), 142
logit (nimble-math), 115

makeBoundInfo, 87
MakeCustomModelClass-Class

(nimble-internal), 114
makeCustomModelValuesClass-Class

(nimble-internal), 114
makeModelDerivsInfo, 88
makeParamInfo, 89
mapsClass-Class (nimble-internal), 114
matrix, 141
matrix (nimMatrix), 140
MCEM_mcse (nimble-internal), 114
mcmc_createModelObject

(nimble-internal), 114
MCMCconf, 54
MCMCconf (MCMCconf-class), 90
MCMCconf-class, 90
messageIfVerbose (nimble-internal), 114
modelBaseClass, 105, 127, 128
modelBaseClass (modelBaseClass-class),

97
modelBaseClass-class, 97
modelDefClass (modelDefClass-class), 105
modelDefClass-class, 105
modelDefInfoClass-Class

(nimble-internal), 114
modelInitialization, 106
modelValues, 106
modelValuesBaseClass

(modelValuesBaseClass-class),
107

modelValuesBaseClass-class, 107
modelValuesConf, 108
Multinomial, 109
multinomial (Multinomial), 109
Multivariate-t, 110
multivariate-t (Multivariate-t), 110
MultivariateNormal, 111
mvInfoClass-Class (nimble-internal), 114
mvt (Multivariate-t), 110

newModel (modelBaseClass-class), 97

nf_preProcessMemberDataObject
(nimble-internal), 114

nfCompilationInfoClass-Class
(nimble-internal), 114

nfMethod, 112, 113
nfVar, 113
nfVar<- (nfVar), 113
nimArray, 143
nimArray (nimMatrix), 140
nimble-internal, 114
nimble-math, 115
nimble-R-functions, 115
nimbleCode, 116, 128, 158
nimbleExternalCall, 117, 131
nimbleFunction, 85, 119, 122
nimbleFunctionBase

(nimbleFunctionBase-class), 121
nimbleFunctionBase-class, 121
nimbleFunctionList

(nimbleFunctionList-class), 121
nimbleFunctionList-class, 121
nimbleFunctionVirtual, 120, 121
nimbleGraphClass-Class

(nimble-internal), 114
nimbleInternalFunctions

(nimble-internal), 114
nimbleList, 6, 86, 122, 132, 137, 149, 152,

153
nimbleListDefClass-Class

(nimble-internal), 114
nimbleMCMC, 35, 38, 54, 123, 173, 214
nimbleModel, 11, 53, 87, 89, 97, 116, 127,

128, 159, 160
nimbleOptions, 128, 129, 159, 211
nimbleProjectClass-Class

(nimble-internal), 114
nimbleRcall, 118, 130
nimbleType, 123
nimbleType (nimbleType-class), 132
nimbleType-class, 132
nimbleUserNamespace (nimble-internal),

114
nimC (nimble-R-functions), 115
nimCat, 132
nimCopy, 133
nimDerivs, 6, 7, 135
nimDerivsInfoClass-Class

(nimble-internal), 114

224 INDEX

nimDim, 136
nimEigen, 67, 137, 150
nimEquals (nimble-math), 115
nimInteger, 141, 142
nimInteger (nimNumeric), 142
nimIntegrate, 138
nimLogical, 141, 142
nimLogical (nimNumeric), 142
nimMatrix, 140, 143
nimNumeric, 141, 142, 142
nimOptim, 19, 20, 143, 146, 147, 152, 153
nimOptimDefaultControl, 146
nimOptimMethod, 146
nimPrint, 147
nimRep (nimble-R-functions), 115
nimRound (nimble-math), 115
nimSeq (nimble-R-functions), 115
nimStep (nimble-math), 115
nimStop, 148
nimSvd, 138, 149, 207
nimSwitch (nimble-math), 115
nlCompilationInfoClass-Class

(nimble-internal), 114
nodeFunctions, 150
numeric, 143
numeric (nimNumeric), 142

optim, 13, 14, 28, 143–146, 152, 153
optimControlNimbleList, 146, 152
optimDefaultControl, 152
optimResultNimbleList, 145, 153

parameterTransform, 24, 28, 30, 153
pdexp (Double-Exponential), 65
pexp_nimble (Exponential), 67
phi (nimble-math), 115
pinvgamma (Inverse-Gamma), 82
posterior_predictive (sampler_BASE), 174
posteriorClass-Class (nimble-internal),

114
pow (nimble-math), 115
pow_int, 155
pqDefined (distributionInfo), 63
print, 133
print (nimPrint), 147
printErrors, 156
printMonitors (MCMCconf-class), 90
printSamplers (MCMCconf-class), 90
prior_samples (sampler_BASE), 174

probit (nimble-math), 115
pt_nonstandard (t), 207

qdexp (Double-Exponential), 65
qexp_nimble (Exponential), 67
qinvgamma (Inverse-Gamma), 82
qt_nonstandard (t), 207
quote, 117, 128

rankSample, 157
rcar_normal (CAR-Normal), 38
rcar_proper (CAR-Proper), 41
rcat (Categorical), 46
RCfunctionCompileClass-Class

(nimble-internal), 114
RCfunInfoClass-Class (nimble-internal),

114
rconstraint (Constraint), 58
rCRP (ChineseRestaurantProcess), 48
rdexp (Double-Exponential), 65
rdirch (Dirichlet), 62
readBUGSmodel, 71, 116, 129, 158, 159
registerDistributions, 160
removeSamplers (MCMCconf-class), 90
rep (nimble-R-functions), 115
resetData (modelBaseClass-class), 97
resetMonitors (MCMCconf-class), 90
resize, 163
rexp_nimble (Exponential), 67
rflat (flat), 69
rhalfflat (flat), 69
rinterval (Interval), 81
rinvgamma (Inverse-Gamma), 82
rinvwish_chol (Inverse-Wishart), 84
RJ_fixed_prior (sampler_BASE), 174
RJ_indicator (sampler_BASE), 174
RJ_toggled (sampler_BASE), 174
rlkj (LKJ), 86
rlkj_corr_cholesky (LKJ), 86
RMakeCustomModelClass-Class

(nimble-internal), 114
Rmatrix2mvOneVar, 164
rmnorm_chol (MultivariateNormal), 111
RmodelBaseClass

(RmodelBaseClass-class), 165
RmodelBaseClass-class, 165
rmulti (Multinomial), 109
rmvt_chol (Multivariate-t), 110
rsqrtinvgamma (nimble-internal), 114

INDEX 225

rt_nonstandard (t), 207
run.time, 165
runAGHQ, 17
runAGHQ (runLaplace), 169
runCrossValidate, 166
runLaplace, 17, 169
runMCMC, 35, 38, 54, 126, 171, 194, 214
RW (sampler_BASE), 174
RW_block (sampler_BASE), 174
RW_block_lkj_corr_cholesky

(sampler_BASE), 174
RW_dirichlet (sampler_BASE), 174
RW_lkj_corr_cholesky (sampler_BASE), 174
RW_llFunction (sampler_BASE), 174
RW_llFunction_block (sampler_BASE), 174
RW_multinomial (sampler_BASE), 174
RW_PF (sampler_BASE), 174
RW_PF_block (sampler_BASE), 174
RW_wishart (sampler_BASE), 174
rwish_chol (Wishart), 216

sampler (sampler_BASE), 174
sampler_AF_slice (sampler_BASE), 174
sampler_barker (sampler_BASE), 174
sampler_BASE, 174
sampler_binary (sampler_BASE), 174
sampler_CAR_normal (sampler_BASE), 174
sampler_CAR_proper (sampler_BASE), 174
sampler_categorical (sampler_BASE), 174
sampler_crossLevel (sampler_BASE), 174
sampler_CRP (sampler_BASE), 174
sampler_CRP_concentration

(sampler_BASE), 174
sampler_ess (sampler_BASE), 174
sampler_noncentered (sampler_BASE), 174
sampler_polyagamma (sampler_BASE), 174
sampler_posterior_predictive, 53
sampler_posterior_predictive

(sampler_BASE), 174
sampler_prior_samples (sampler_BASE),

174
sampler_RJ_fixed_prior (sampler_BASE),

174
sampler_RJ_indicator (sampler_BASE), 174
sampler_RJ_toggled (sampler_BASE), 174
sampler_RW, 53
sampler_RW (sampler_BASE), 174
sampler_RW_block (sampler_BASE), 174

sampler_RW_block_lkj_corr_cholesky
(sampler_BASE), 174

sampler_RW_dirichlet (sampler_BASE), 174
sampler_RW_lkj_corr_cholesky

(sampler_BASE), 174
sampler_RW_llFunction (sampler_BASE),

174
sampler_RW_llFunction_block

(sampler_BASE), 174
sampler_RW_multinomial (sampler_BASE),

174
sampler_RW_wishart (sampler_BASE), 174
sampler_slice, 53
sampler_slice (sampler_BASE), 174
sampler_slice_CRP_base_param

(sampler_BASE), 174
samplers, 56
samplers (sampler_BASE), 174
samplesSummary (nimble-internal), 114
seq (nimble-R-functions), 115
seq_along (nimble-R-functions), 115
setAndCalculate, 195
setAndCalculateDiff (setAndCalculate),

195
setAndCalculateOne, 196
setData (modelBaseClass-class), 97
setInits (modelBaseClass-class), 97
setMonitors (MCMCconf-class), 90
setMonitors2 (MCMCconf-class), 90
setRefClass, 128
setSamplerExecutionOrder

(MCMCconf-class), 90
setSamplers (MCMCconf-class), 90
setSize, 197
setThin (MCMCconf-class), 90
setThin2 (MCMCconf-class), 90
setupCodeTemplateClass-Class

(nimble-internal), 114
setupMargNodes, 16, 18, 26, 28, 30, 198
setupOutputs, 201
simNodes, 202
simNodesMV, 203
simulate, 151
simulate (nodeFunctions), 150
singleModelValuesAccess

(nimble-internal), 114
singleModelValuesAccessClass-Class

(nimble-internal), 114

226 INDEX

singleVarAccessClass
(singleVarAccessClass-class),
204

singleVarAccessClass-class, 204
slice (sampler_BASE), 174
stick_breaking (StickBreakingFunction),

204
stickbreaking (StickBreakingFunction),

204
StickBreakingFunction, 204
stop (nimStop), 148
summaryAGHQ (summaryLaplace), 205
summaryLaplace, 17, 170, 205
svd (nimSvd), 149
svdNimbleList, 207

t, 207
testBUGSmodel, 209
topologicallySortNodes

(modelBaseClass-class), 97

valueInCompiledNimbleFunction, 210
values, 211
values<- (values), 211
varInfoClass-Class (nimble-internal),

114

WAIC (waic), 212
waic, 38, 212
waicDetailsNimbleList, 215
waicNimbleList, 216
which (nimble-R-functions), 115
Wishart, 216
wishart (Wishart), 216
withNimbleOptions, 218

	ADbreak
	ADNimbleList
	ADproxyModelClass-class
	any_na
	as.carAdjacency
	as.carCM
	asRow
	autoBlock
	BUGSdeclClass-class
	buildAGHQGrid
	buildAuxiliaryFilter
	buildBootstrapFilter
	buildEnsembleKF
	buildIteratedFilter2
	buildLaplace
	buildLiuWestFilter
	buildMCEM
	buildMCMC
	calculateWAIC
	CAR-Normal
	CAR-Proper
	carBounds
	carMaxBound
	carMinBound
	CAR_calcNumIslands
	Categorical
	checkInterrupt
	ChineseRestaurantProcess
	clearCompiled
	CmodelBaseClass-class
	CnimbleFunctionBase-class
	codeBlockClass-class
	compileNimble
	configureMCMC
	configureRJ
	Constraint
	decide
	decideAndJump
	declare
	deregisterDistributions
	Dirichlet
	distributionInfo
	Double-Exponential
	eigenNimbleList
	Exponential
	extractControlElement
	flat
	getBound
	getBUGSexampleDir
	getConditionallyIndependentSets
	getDefinition
	getMacroParameters
	getNimbleOption
	getParam
	getSamplesDPmeasure
	getsize
	identityMatrix
	initializeModel
	Interval
	Inverse-Gamma
	Inverse-Wishart
	is.nf
	is.nl
	LKJ
	makeBoundInfo
	makeModelDerivsInfo
	makeParamInfo
	MCMCconf-class
	modelBaseClass-class
	modelDefClass-class
	modelInitialization
	modelValues
	modelValuesBaseClass-class
	modelValuesConf
	Multinomial
	Multivariate-t
	MultivariateNormal
	nfMethod
	nfVar
	nimble-internal
	nimble-math
	nimble-R-functions
	nimbleCode
	nimbleExternalCall
	nimbleFunction
	nimbleFunctionBase-class
	nimbleFunctionList-class
	nimbleFunctionVirtual
	nimbleList
	nimbleMCMC
	nimbleModel
	nimbleOptions
	nimbleRcall
	nimbleType-class
	nimCat
	nimCopy
	nimDerivs
	nimDim
	nimEigen
	nimIntegrate
	nimMatrix
	nimNumeric
	nimOptim
	nimOptimDefaultControl
	nimOptimMethod
	nimPrint
	nimStop
	nimSvd
	nodeFunctions
	optimControlNimbleList
	optimDefaultControl
	optimResultNimbleList
	parameterTransform
	pow_int
	printErrors
	rankSample
	readBUGSmodel
	registerDistributions
	resize
	Rmatrix2mvOneVar
	RmodelBaseClass-class
	run.time
	runCrossValidate
	runLaplace
	runMCMC
	sampler_BASE
	setAndCalculate
	setAndCalculateOne
	setSize
	setupMargNodes
	setupOutputs
	simNodes
	simNodesMV
	singleVarAccessClass-class
	StickBreakingFunction
	summaryLaplace
	svdNimbleList
	t
	testBUGSmodel
	valueInCompiledNimbleFunction
	values
	waic
	waicDetailsNimbleList
	waicNimbleList
	Wishart
	withNimbleOptions
	Index

